Bacterial genomics is making an increasing contribution to the fields of medicine and public health microbiology. Consequently, accurate species identification of bacterial genomes is an important task, particularly as the number of genomes stored in online databases increases rapidly and new species are frequently discovered. Existing database entries require regular re-evaluation to ensure that species annotations are consistent with the latest species definitions. We have developed an automated method for bacterial species identification that is an extension of ribosomal multilocus sequence typing (rMLST). The method calculates an 'rMLST nucleotide identity' (rMLST-NI) based on the nucleotides present in the protein-encoding ribosomal genes derived from bacterial genomes. rMLST-NI was used to validate the species annotations of 11839 publicly available and genomes based on a comparison with a library of type strain genomes. rMLST-NI was compared with two whole-genome average nucleotide identity methods (OrthoANIu and FastANI) and the -mer based Kleborate software. The results of the four methods agreed across a dataset of 11839 bacterial genomes and identified a small number of entries (=89) with species annotations that required updating. The rMLST-NI method was 3.5 times faster than Kleborate, 4.5 times faster than FastANI and 1600 times faster than OrthoANIu. rMLST-NI represents a fast and generic method for species identification using type strains as a reference.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9676034 | PMC |
http://dx.doi.org/10.1099/mgen.0.000849 | DOI Listing |
PLoS One
January 2025
Department of Traditional Chinese Medicine, Ruijin Hospital, Shanghai Jiao Tong University Medical College, Shanghai, China.
Mycobacterium abscessus is a rapidly growing nontuberculous mycobacterium that causes severe pulmonary infections. Recent studies indicate that ferroptosis may play a critical role in the pathogenesis of M. abscessus pulmonary disease.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Ocean Integrated Science, Chonnam National University, Yeosu, Korea.
Ensuring the supply of safe and high-quality drinking water can be compromised by the presence of chironomid larvae in drinking water treatment plants (DWTPs), which may contaminate municipal water systems through freshwater resources. Chironomids are dominant species known for their resilience to a broad range of extreme aquatic environments. This study aimed to identify the morphological characteristics and obtain genetic information of the chironomid Paratanytarsus grimmii found in the water intake source and freshwater resource of DWTPs in Korea, highlighting the potential possibility of a parthenogenetic chironomid outbreak within DWTP networks.
View Article and Find Full Text PDFDNA Res
January 2025
The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
Sex determination systems are diverse in echinoderms, however, our understanding is still very limited in this research field, especially for Asteroidea species. The northern Pacific seastar, Asterias amurensis, has attracted widespread concern due to its population outbreaks and high-risk invasions. Using whole-genome re-sequencing data from 40 females and 40 males, we identified a candidate sex determination region in A.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
Legume Rhizobium Sciences, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia.
Unlabelled: Rhizobia are soil bacteria capable of establishing symbiosis within legume root nodules, where they reduce atmospheric N into ammonia and supply it to the plant for growth. Australian soils often lack rhizobia compatible with introduced agricultural legumes, so inoculation with exotic strains has become a common practice for over 50 years. While extensive research has assessed the N-fixing capabilities of these inoculants, their genomics, taxonomy, and core and accessory gene phylogeny are poorly characterized.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Department of Translational Genomics, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands.
Food-grade titanium dioxide (E171) is widely used in food, feed, and pharmaceuticals for its opacifying and coloring properties. This study investigates the formation of reactive oxygen species (ROS) and the aggregation behavior of E171 using the TNO Gastrointestinal (GI) model, which simulates the stomach and small intestine. E171 was characterized using multiple techniques, including electron spin resonance spectroscopy, single-particle inductively coupled plasma-mass spectrometry, transmission electron microscopy, and dynamic light scattering.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!