Genomics-Guided Efficient Identification of 2,5-Diketopiperazine Derivatives from Actinobacteria.

Chembiochem

Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037, Marburg, Germany.

Published: February 2023

Secondary metabolites derived from microorganism constitute an important part of natural products. Mining of the microbial genomes revealed a large number of uncharacterized biosynthetic gene clusters, indicating their greater potential to synthetize specialized or secondary metabolites (SMs) than identified by classic fermentation and isolation approaches. Various bioinformatics tools have been developed to analyze and identify such gene clusters, thus accelerating significantly the mining process. Heterologous expression of an individual biosynthetic gene cluster has been proven as an efficient way to activate the genes and identify the encoded metabolites that cannot be detected under normal laboratory cultivation conditions. Herein, we describe a concept of genomics-guided approach by performing genome mining and heterologous expression to uncover novel CDPS-derived DKPs and functionally characterize novel tailoring enzymes embedded in the biosynthetic pathways. Recent works focused on the identification of the nucleobase-related and dimeric DKPs are also presented.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10092475PMC
http://dx.doi.org/10.1002/cbic.202200502DOI Listing

Publication Analysis

Top Keywords

secondary metabolites
8
biosynthetic gene
8
gene clusters
8
heterologous expression
8
genomics-guided efficient
4
efficient identification
4
identification 25-diketopiperazine
4
25-diketopiperazine derivatives
4
derivatives actinobacteria
4
actinobacteria secondary
4

Similar Publications

Mining Silent Biosynthetic Gene Clusters for Natural Products in Filamentous Fungi.

Chem Biodivers

January 2025

Zhejiang University, Polytechnic Institute, 866 Yuhangtang Road, Hangzhou, CHINA.

Filamentous fungi are of great interest due to their powerful metabolic capabilities and potentials to produce abundant various secondary metabolites as natural products (NPs), some of which have been developed into pharmaceuticals. Furthermore, high-throughput genome sequencing has revealed tremendous cryptic NPs underexplored. Based on the development of in silico genome mining, various techniques have been introduced to rationally modify filamentous fungi,awakening the silent biosynthetic gene clusters (BGCs) and visualizing the NPs originally cryptic.

View Article and Find Full Text PDF

The cross-resistance to etofenprox in Nilaparvata lugens with a high adaptability to resistant rice variety IR56.

Pest Manag Sci

January 2025

Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China.

Background: The application of resistant rice varieties and insecticides represents two crucial strategies for managing the brown planthopper (BPH), Nilaparvata lugens (Stål). Insects often employ similar detoxification mechanisms to metabolize plant secondary metabolites and insecticides, which poses a potential risk that BPH population adapted to resistant rice may also obtain resistance to some insecticides.

Results: Here in a BPH population (R-IR56) that has adapted to the resistant rice variety IR56 through continuous selection, the moderate resistance to etofenprox was observed.

View Article and Find Full Text PDF

Cyanobacteria are widespread, photosynthetic, gram-negative bacteria that generate numerous bioactive secondary metabolites complex biosynthetic enzymatic machinery. The model cyanobacterium sp. strain PCC 7002, hereafter referred to as PCC 7002, contains a type I polyketide synthase (PKS), termed olefin synthase (OlsWT), that synthesizes 1-nonadecene and 1,14-nonadecadiene: α-olefins that are important for growth at low temperatures.

View Article and Find Full Text PDF

Phytosome-Enhanced Secondary Metabolites for Improved Anticancer Efficacy: Mechanisms and Bioavailability Review.

Drug Des Devel Ther

January 2025

Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia.

Purpose: Phytosome technology, an advanced lipid-based delivery system, offers a promising solution for enhancing the bioavailability and therapeutic efficacy of secondary metabolites, particularly in cancer treatment. These metabolites, such as flavonoids, terpenoids, and alkaloids, possess significant anticancer potential but are often limited by poor solubility and low absorption. This review aims to investigate how phytosome encapsulation improves the pharmacokinetic profiles and anticancer effectiveness of these bioactive compounds.

View Article and Find Full Text PDF

The ethanol extract of as an ovicidal agent against .

Narra J

December 2024

Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia.

Dengue hemorrhagic fever (DHF) is a major health concern in tropical and subtropical countries. Indonesia has DHF cases perennially every year. On the other hand, Indonesia is abundant with seaweed ), which can be found across its seashore.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!