A novel dual lab-in-syringe flow-batch (D-LIS-FB) platform for automatic fabric-disk-in-syringe sorptive extraction followed by oxidative back-extraction as a front end to inductively coupled plasma atomic emission spectrometry (ICP-AES) is presented for the first time. Sol-gel poly(caprolactone)-poly(dimethylsiloxane)-poly(caprolactone)-coated polyester fabric disks were packed at the top of the glass barrel of a microsyringe pump as an alternative to column preconcentration. Herein lie multiple significant advantages including effectiveness, compactness, lower back-pressure, and lower time of analysis. Copper, lead, and cadmium were used as model analytes for the exploration of the capabilities of the developed platform. The online retained metal-diethyldithiophosphate complexes were eluted using diisopropyl ketone prior to atomization. Undesirable incompatibility of organic solvents for direct injection into the ICP-AES system was overcome ingeniously in a flow manner by oxidative back-extraction of the analytes utilizing a second lab-in-syringe setup. Following its optimization, the D-LIS-FB platform showed excellent linearity, in combination with good method precision (i.e., RSD < 3.4%) and trueness. Moreover, the limits of detection were 0.25 μg L for Cd(II), 0.13 μg L for Cu(II), and 0.37 μg L for Pb(II), confirming the applicability of the proposed system for metal analysis at trace levels. As a proof-of-concept, the developed versatile system was utilized for the analysis of different environmental, food, and biological samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.2c02268 | DOI Listing |
Anal Chem
September 2022
Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
A novel dual lab-in-syringe flow-batch (D-LIS-FB) platform for automatic fabric-disk-in-syringe sorptive extraction followed by oxidative back-extraction as a front end to inductively coupled plasma atomic emission spectrometry (ICP-AES) is presented for the first time. Sol-gel poly(caprolactone)-poly(dimethylsiloxane)-poly(caprolactone)-coated polyester fabric disks were packed at the top of the glass barrel of a microsyringe pump as an alternative to column preconcentration. Herein lie multiple significant advantages including effectiveness, compactness, lower back-pressure, and lower time of analysis.
View Article and Find Full Text PDFAnal Chim Acta
November 2018
Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University, Thessaloniki 54124, Greece. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!