This work demonstrates for the first time that a photochromic metal organic framework (pMOF) can be employed as a promising class of NIR-II photothermal material based on the photoinduced donor-acceptor intermolecular charge transfer process. After further surface-modification, such UV-activated pMOF-a nanoparticles allow the strong inhibition of 4T1 cancer cells under 1064 nm laser irradiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2cc04064f | DOI Listing |
Anal Chem
January 2025
School of Life Sciences, Key Laboratory of Space Bioscience & Biotechnology, Northwestern Polytechnical University, Xi'an 710072, China.
Lymphoma is a malignant cancer characterized by a rapidly increasing incidence, complex etiology, and lack of obvious early symptoms. Efficient theranostics of lymphoma is of great significance in improving patient outcomes, empowering informed decision-making, and driving medical innovation. Herein, we developed a multifunctional nanoplatform for precise optical imaging and therapy of lymphoma based on a new photosensitizer (1-oxo-1-benzoo[de]anthracene-2,3-dicarbonitrile-triphenylamine (OBADC-TPA)).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China. Electronic address:
Melanoma is characterized by its aggressiveness, high metastatic potential, and numerous mutations, which limit the effectiveness of current treatments. To address this issue, we developed a dissolvable microneedle (MN) system composed of poly(2-ethyl-2-oxazoline) (PEtOz) and chondroitin sulfate (CS). This MN system was loaded with liposomes containing both a NIR-II photothermal small molecule (IRLy) and the natural anticancer agent Gambogic acid (GA), forming Lip(IRLy + GA) MNs.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore.
Photodynamic therapy (PDT) holds promise as a cancer treatment modality due to its potential for enhanced therapy precision and safety. To enhance deep tissue penetration and minimize tissue adsorption and phototoxicity, developing photosensitizers activated by second near-infrared window (NIR-II) light shows significant potential. However, the efficacy of PDT is often impeded by tumor microenvironment hypoxia, primarily caused by irregular tumor vasculature.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Center for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China.
Organic photosensitizers (PSs) possessing NIR-II emission and photodynamic/photothermal effect have received a great sense of attention for their cutting-edge applications in imaging-guided multimodal phototherapy. However, it is highly challenging to design efficient PSs with high luminescence and phototherapy performance simultaneously. In this study, a spiro-functionalization strategy is proposed to alleviate aggregate-caused quenching of PSs and promote photodynamic therapy, and the strategy is verified via a spiro[fluorine-9,9'-xanthene]-modified NIR-II PS (named SFX-IC) with an acceptor-donor-acceptor configuration.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Department of Spine Surgery, The Ninth Medical Center of PLA General Hospital, Beijing 100101, China.
While nanozymes are commonly employed in nanocatalytic therapy (NCT), the efficacy of NCT is hampered by the limited catalytic activity of nanozymes and the intricate tumor microenvironment (TME). In this work, we design a high-efficiency nanozyme with NIR-II photothermal property for the mild hyperthermia-augmented NCT. In order to endow a single-component nanomaterial the ability to simultaneously catalyze and exhibit NIR-II photothermal properties, a straightforward template method is utilized to fabricate sulfur vacancies (V)-doped CoS nanocages.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!