Associations of faecal microbiota with influenza-like illness in participants aged 60 years or older: an observational study.

Lancet Healthy Longev

Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands; Department of Medical Microbiology and Infection prevention, Virology and Immunology research Group, University Medical Center Groningen, Groningen, Netherlands. Electronic address:

Published: January 2021

AI Article Synopsis

  • Older adults (60+) are particularly vulnerable to respiratory infections, with vaccination being less effective for them due to immune system aging, highlighting the need for improved strategies.
  • The study investigates the relationship between gut microbiota composition and respiratory infections in older adults during flu season, by analyzing fecal samples and immune markers.
  • Findings suggest that understanding and potentially manipulating gut microbiota could enhance immune responses and provide significant public health benefits in older populations.

Article Abstract

Background: People aged 60 years or older are at high risk for respiratory infections, one of the leading causes of mortality worldwide. Vaccination is the main way to protect against these infections; however, vaccination is less effective in older adults than in younger adults due to ageing of the immune system, so innovative strategies that improve vaccine responses could provide a major public health benefit. The gut microbiota regulates host immune homoeostasis and response against pathogens, but human studies showing the effects of the gut microbiota on respiratory infections in older adults are sparse. We aimed to investigate the composition of the microbiota in relation to respiratory infections and local and systemic immune markers in older adults during an influenza season.

Methods: In this observational study, participants were selected from an influenza-like illness (ILI) prospective surveillance cohort in which community-dwelling adults aged 60 years and older in the Netherlands were recruited through their general practitioner or the Civil Registry. Inclusion criteria have been described elsewhere. Participants completed questionnaires and self-reported symptoms. To measure microbiota composition, faecal samples were collected from participants registering an ILI event, with a follow-up (recovery) sample collected 7-9 weeks after the ILI event, and from asymptomatic participants not reporting any event throughout the season. We tested associations between microbiota profiles and a set of health-related variables, patient characteristics, and local and systemic immune markers. We cultured identified bacterial biomarkers for ILI with CaCo-2 cells in an in vitro intestinal epithelial model and measured the induced immune response. This study is registered with http://www.trialregister.nl, NL4666.

Findings: Between Oct 1, 2014, and April 30, 2015, 2425 older adults were recruited into the ILI surveillance cohort. From Oct 1, 2014, to June 15, 2015, faecal samples were collected from 397 participants, of whom 213 (54%) reported an ILI event once throughout the season and 184 (46%) did not. 192 ILI participants recovered and provided follow-up samples. Microbiota composition was altered during an ILI event. The Bacteroidetes (mean relative abundance 17·51% [SD 11·41] in the ILI group and 14·19% [10·02] in the control group; adjusted p=0·014) and the Proteobacteria (3·40% [8·10] in the ILI group and 1·57% [3·69] in the control group; adjusted p=0·015) were more abundant in the ILI group than in the control group. The abundance of Ruminococcus torques was positively associated with ILI and the abundance of Escherichia/Shigella, negatively correlated with alpha diversity, and negatively co-occurred with beneficial taxa, including butyrate producers. R torques was associated with pro-inflammatory profiles, both locally in faeces and systemically in blood. ILI-associated taxa (R torques and Escherichia coli) had symbiotic effects on the cellular immune response when cultured together in an in vitro model.

Interpretation: The abundances of specific bacteria could be used as potential biomarkers for susceptibility to respiratory infections and as targets for intervention in the ageing population.

Funding: The Dutch Ministry of Health, Welfare and Sport, and the Strategic Program of the National Institute for Public Health and the Environment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S2666-7568(20)30034-9DOI Listing

Publication Analysis

Top Keywords

respiratory infections
16
older adults
16
ili event
16
aged years
12
years older
12
ili
12
ili group
12
control group
12
influenza-like illness
8
observational study
8

Similar Publications

Multiple respiratory viruses can concurrently or sequentially infect the respiratory tract, making their identification crucial for diagnosis, treatment, and disease management. We present a label-free diagnostic platform integrating surface-enhanced Raman scattering (SERS) with deep learning for rapid, quantitative detection of respiratory virus coinfections. Using sensitive silica-coated silver nanorod array substrates, over 1.

View Article and Find Full Text PDF

Background: The literature is equivocal as to whether the predicted negative mental health impact of the COVID-19 pandemic came to fruition. Some quantitative studies report increased emotional problems and depression; others report improved mental health and well-being. Qualitative explorations reveal heterogeneity, with themes ranging from feelings of loss to growth and development.

View Article and Find Full Text PDF

Background: The relationships between pectoralis muscle parameters and outcomes in patients with coronavirus disease 2019 (COVID-19) remain uncertain.

Methods: We systematically searched PubMed, Embase, Web of Science and the Cochrane Library from 1 January 2019 to 1 May 2024 to identify non-overlapping studies evaluating pectoralis muscle-associated index on chest CT scan with clinical outcome in COVID-19 patients. Random-effects and fixed-effects meta-analyses were performed, and heterogeneity between studies was quantified using the I2 statistic.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus-1 (SARS-CoV-1) and -2 (SARS-CoV-2) are beta-coronaviruses (β-CoVs) that have caused significant morbidity and mortality worldwide. Therefore, a better understanding of host responses to β-CoVs would provide insights into the pathogenesis of these viruses to identify potential targets for medical countermeasures. In this study, our objective is to use a systems biology approach to explore the magnitude and scope of innate immune responses triggered by SARS-CoV-1 and -2 infection over time in pathologically relevant human lung epithelial cells (Calu-3/2B4 cells).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!