The use of insecticide mixtures for resistance management has been a controversial topic for many decades. Here, we provide a reassessment of the fundamental theory of insecticide mixtures. First, we examine how mixtures differ from other strategies. We suggest that the fundamental strategy concept of a mixture is defined by the simultaneous use of insecticides and their overlapping exposure. Second, we provide a simple, illustrative model to show how mixtures affect resistance evolution. Following the existing literature, we identify a role for 'redundant kill' acting against resistant individuals, which we link to the overlapping exposure of insecticides. We also identify the occurrence of 'additional kill' acting against susceptible individuals, which is the immediate consequence of the simultaneous use of insecticides. Third, we take a basic approach to the comparison of mixtures and other strategies using a simple model. We find that a common comparison of the time to resistance alone leaves the effects of additional kill unaccounted for. Moreover, we demonstrate that different approaches to comparison can lead to different results because of biases that are introduced in the comparison setup. Fourth, still using the same model, we showcase a more sophisticated approach to comparison using optimised strategies. We find that optimised mixtures always perform better than other strategies due to the combination of redundant and additional kill. We suggest that the comparison of optimised strategies is unbiased because each strategy is performing the best that it can. On this basis, in theory (but not necessarily practice), we believe that mixtures are better than other strategies and, through the steps of our argument, we can tie this success back to the fundamental properties (of simultaneous use and overlapping exposure) that distinguish mixtures from other strategy concepts. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10092901 | PMC |
http://dx.doi.org/10.1002/ps.7180 | DOI Listing |
Trop Biomed
December 2024
Tropical Infectious Diseases Research and Education Centre (TIDREC), Higher Institution Centre of Excellence, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
The use of Streptomyces secondary metabolites for mosquito control has recently received positive attention. Accordingly, this study was performed to elucidate the cellular, genomic and biochemical responses of Aedes mosquitoes to Streptomyces sp. KSF103 ethyl acetate (EA) extract, a mixture previously characterized for its potential bioactivity.
View Article and Find Full Text PDFInsects
December 2024
National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China.
Asian citrus psyllid (ACP), (Hemiptera: Liviidae), is one of the most devastating pests in citrus orchards due to its role in transmitting Huanglongbing (HLB). Currently, chemical control remains the most effective strategy for ACP management. Mineral oils are commonly used as insecticides or adjuvants in integrated pest management (IPM) practices.
View Article and Find Full Text PDFMalar J
January 2025
Caribbean Centre for Research in Biosciences, Natural Products Institute, University of the West Indies, Kingston, Jamaica.
Background: Synergists reduce insecticide metabolism in mosquitoes by competing with insecticides for the active sites of metabolic enzymes, such as cytochrome P450s (CYPs). This increases the availability of the insecticide at its specific target site. The combination of both insecticides and synergists increases the toxicity of the mixture.
View Article and Find Full Text PDFBull Environ Contam Toxicol
January 2025
Centro de Investigaciones en Bioquímica Clínica e Inmunología-CIBICI, Facultad de Ciencias Químicas, CONICET, Universidad Nacional de Córdoba, Haya de La Torre Esq., Medina Allende, 5000, Córdoba, Argentina.
The co-occurrence of pesticides in aquatic ecosystems highlights the need for studies investigating their potential toxicity as mixtures to the aquatic biota. Well-designed studies are essential to assess the presence and toxicity of relevant pesticide mixtures, particularly those such as the chloroacetamide herbicide metolachlor (MET), the triazole fungicide epoxiconazole (EP) and the diamide anthranilic insecticide chlorantraniliprole (CAP), which have not been previously tested, and whose co-occurrence is possible in waters close to cultivated areas. A solid phase extraction ultra-performance liquid chromatography-tandem quadrupole mass spectrometry method was developed to quantify equivalent toxicity concentrations for CAP, EP, and MET in artificial freshwater during acute toxicity tests.
View Article and Find Full Text PDFPest Manag Sci
January 2025
Heinrich-Heine-University Düsseldorf, Institute of Organic Chemistry and Macromolecular Chemistry, Duesseldorf, Germany.
Chemical crop protection is one of the most cost-effective methods for agriculture, as crop failures can be prevented, and sustainable growth can be enabled regardless of the seasons. Agricultural production must be significantly increased in the future to meet the food needs of a growing world population. However, the continued loss of established active ingredients due to consumer perceptions, changing needs of farmers and ever-changing regulatory requirements is higher than annually new active ingredients introduced to the market.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!