Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Solar-driven interfacial evaporation is a promising technology for water recycling and purification. A sustainable solar evaporation material should have not only high photothermal conversion efficiency, but also an ecofriendly fabrication process as well as pollutant degradation and sterilization properties. We present in this work a solar evaporator based on graphitic carbon nitride (g-CN) and copper phthalocyanine (CUPC) composites with typical type-I heterojunctions. Superhydrophilic three-dimensional macroporous g-CN was obtained by self-assembly of precursors in aqueous solution followed by thermal polycondensation. By adding various weight ratios (0.15%, 1.5% and 7.5%) of CUPC, the composites exhibited a strong absorption in the region of red and infrared light. The CUPC-CN 7.5% composite achieved a photothermal conversion efficiency of 98.5% in nanofluids with an interfacial solar evaporation efficiency of 93.6% for artificial sea water and 98.7% for deionized water, which are among the highest reported to date. Besides, the composite materials demonstrated superior water purification capabilities by decomposing dye molecules and bacteria in aqueous solution. Our work established a novel approach for the development of multifunctional interfacial evaporators based on macroporous organic semiconductor heterostructures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2nr03289a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!