Structures of alternative pathway proteins have offered a comprehensive structural basis for understanding the molecular mechanisms governing activation and regulation of the amplification pathway of the complement cascade. Although properdin (FP) is required in vivo to sustain a functional alternative pathway, structural studies have been lagging behind due to the extended structure and polydisperse nature of FP. We review recent progress with respect to structure determination of FP and its proconvertase/convertase complexes. These structures identify in detail regions in C3b, factor B and FP involved in their mutual interactions. Structures of FP oligomers obtained by integrative studies have shed light on how FP activity depends on its oligomerization state. The accumulated structural knowledge allows us to rationalize the effect of point mutations causing FP deficiency. The structural basis for FP inhibition by the tick CirpA proteins is reviewed and the potential of alphafold2 predictions for understanding the interaction of FP with other tick proteins and the NKp46 receptor on host immune cells is discussed. The accumulated structural knowledge forms a comprehensive basis for understanding molecular interactions involving FP, pathological conditions arising from low levels of FP, and the molecular strategies used by ticks to suppress the alternative pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10087229 | PMC |
http://dx.doi.org/10.1111/imr.13129 | DOI Listing |
J Neurophysiol
January 2025
School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China.
Parkinson's disease (PD) is a prevalent and challenging neurodegenerative disorder, and may involve impaired autophagy. Nuclear factor erythroid-2-related factor 2 (Nrf2) is crucial for regulating autophagy-related genes, maintaining cellular homeostasis. Electroacupuncture (EA), a complementary and alternative therapy for PD, has gained widespread clinical application.
View Article and Find Full Text PDFACS Sens
January 2025
Hubei Key Laboratory of Genetic Regulation & Integrative Biology, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, School of Life Sciences, Central China Normal University, Wuhan 430079, China.
Heme oxygenase-1 (HO-1) catalyzes heme degradation on the consumption of NADPH and molecular oxygen. As an inducible enzyme, HO-1 is highly induced in various disease states, including cancer. Currently, two fluorescent probes for HO-1 have been designed based on the catalytic activity of HO-1, in which the probes serve as a substrate, so NADPH is required to enable the detection.
View Article and Find Full Text PDFVet Q
December 2025
Faculty of Veterinary Medicine, Department of Small Animals, Ghent University, Merelbeke, Belgium.
Chronic Kidney Disease (CKD) is one of the most common conditions affecting felines, yet the metabolic alterations underlying its pathophysiology remain poorly understood, hindering progress in identifying biomarkers and therapeutic targets. This study aimed to provide a comprehensive view of metabolic changes in feline CKD across conserved biochemical pathways and evaluate their progression throughout the disease continuum. Using a multi-biomatrix high-throughput metabolomics approach, serum and urine samples from CKD-affected cats ( = 94) and healthy controls ( = 84) were analyzed with ultra-high-performance liquid chromatography-high-resolution mass spectrometry.
View Article and Find Full Text PDFMol Omics
January 2025
Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India.
Lung cancer remains the leading cause of cancer-related deaths worldwide due to its poor prognosis. Despite significant advancements in the understanding of cancer development, improvements in diagnostic methods, and multimodal therapeutic regimens, the prognosis of lung cancer has still not improved. Therefore, it is reasonable to look for newer and alternative medicines for treatment.
View Article and Find Full Text PDFJ Cancer
January 2025
Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi 341000, China.
Absence in melanoma 2 (AIM2) protein functions as a double-stranded DNA sensor and is critical for host defense against intracellular bacterial and viral pathogens. Recent research has highlighted the significance of AIM2 in the pathogenesis of diverse malignancies. Through its recognition of foreign or intracellular dsDNA, AIM2 triggers inflammasome activation, resulting in the release of pro-inflammatory cytokines such as IL-1β, IL-18, and induction of pyroptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!