Self-assembly of heterogeneous bilayers stratified by Au-S and hydrogen bonds on Au(111).

Phys Chem Chem Phys

Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.

Published: September 2022

The self-assembly of heterogeneous bilayers on Au substrates was investigated using atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and infrared reflection absorption spectroscopy (IRAS). The formation of a well-defined bilayer including different types of functional groups would be one of the desired goals to create varying surface functionalities. In this study, we examined the assembly of a hydrogen-bonded molecular layer to another functional alkanethiolate self-assembled monolayer (SAM) on the Au(111) surface. The chemical properties and bond strength of the hydrogen bonds at the interlayer differ from those of the Au-S bonds at the anchor of thiolate SAMs, therefore the adsorbed molecules are expected to form a stratified bilayer. In this study, on one hand, we revealed that imidazole-terminated alkanethiolate SAMs (Im-SAMs) have an atomically smooth topography but chemically inhomogeneous Au-S anchors, rather incomplete than -alkanethiolate SAMs, on the Au(111) surface. On the other hand, we confirmed the self-assembly of the heterogeneous bilayers including Im-SAMs on the Au(111) surface, even in a mixed solution containing two types of molecules. These results show that the self-assembly of the bilayer stratified by H bonds and Au-S bonds is flexible and adaptable.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2cp03356aDOI Listing

Publication Analysis

Top Keywords

self-assembly heterogeneous
12
heterogeneous bilayers
12
au111 surface
12
hydrogen bonds
8
au-s bonds
8
bonds
5
self-assembly
4
bilayers stratified
4
au-s
4
stratified au-s
4

Similar Publications

Hierarchically aligned heterogeneous core-sheath hydrogels.

Nat Commun

January 2025

Institute of Innovative Materials, Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen, China.

Natural materials with highly oriented heterogeneous structures are often lightweight but strong, stiff but tough and durable. Such an integration of diverse incompatible mechanical properties is highly desired for man-made materials, especially weak hydrogels which are lack of high-precision structural design. Herein, we demonstrate the fabrication of hierarchically aligned heterogeneous hydrogels consisting of a compactly crosslinked sheath and an aligned porous core with alignments of nanofibrils at multi-scales by a sequential self-assembly assisted salting out method.

View Article and Find Full Text PDF

This study characterizes the influence of self-assembly conditions on the aggregation pathway and resulting photophysical properties of one-dimensional aggregates of the simple imide-substituted perylene diimide, N, N'-didodecyl-3,4,9,10-perylenedicarboximide (ddPDI). We show that ddPDI, which has symmetric alkyl chains at the imide positions, assembles into fibers with distinct morphology, emission spectra, and temperature-dependent behavior as a function of preparation conditions. In all conditions explored, aggregates are one-dimensional; however, assembly conditions can bias formation to either J-like or H-like aggregates.

View Article and Find Full Text PDF

Deciphering the surface electrochemical reconstruction of ruthenium-cobalt-nickel phosphide for efficient high-current hydrogen evolution and overall water splitting.

J Colloid Interface Sci

December 2024

Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources of Ministry of Education, Wuhan University of Technology, Wuhan, Hubei 430073, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430073, China. Electronic address:

Article Synopsis
  • Efficient bifunctional transition metal phosphide catalysts, specifically RuCo co-doped NiP (RuCoNiP), were designed to improve hydrogen production technologies through one-step electrodeposition.
  • The resulting structures, RuCoNiP@α-Ni(OH) and RuCoNiP@Co/Ni(OH), exhibited enhanced hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) activities and stabilities due to optimized adsorption properties and reduced energy barriers.
  • A dual-electrode system utilizing RuCoNiP@α-Ni(OH) and RuCoNiP@Co/Ni(OH) achieved ultra-low battery voltage and impressive stability, highlighting the potential of this synthetic approach for efficient water-s
View Article and Find Full Text PDF

With the development of industry, agriculture, and aquaculture, excessive ammonia nitrogen mainly involving ionic ammonia (NH) and molecular ammonia (NH) has inevitable access to the aquatic environment, posing a severe threat to water safety. Photocatalytic technology shows great advantages for ammonia nitrogen removal, such as its efficiency, reusability, low cost, and environmental friendliness. In this study, CP (g-CN/CoP) composite materials, which exhibited high-efficiency ammonia nitrogen removal, were synthesized through a simple self-assembly method.

View Article and Find Full Text PDF

Micron-scale colloidal particles with short-ranged attractions, e.g., colloids functionalized with single-stranded DNA oligomers, have emerged as a powerful platform for studying colloidal self-assembly phenomena with the long-term goal of identifying routes for metamaterial fabrication.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!