Developmental programming studies using mouse models have housed the animals at human thermoneutral temperatures (22°C) which imposes constant cold stress. As this impacts energy homeostasis, we investigated the effects of two housing temperatures (22°C and 30°C) on obesity development in male and female offspring of Control and FR dams. Pregnant mice were housed at 22°C (cold-exposed, CE) or 30°C (thermoneutrality, TN) room temperature. At gestational age e10, mice were fed either an ad libitum diet (Control) or were 30% food-restricted (FR) to produce low birth weight newborns. Following delivery, all dams were fed an ad libitum diet and maternal mice continued to nurse their own pups. At 3 weeks of age, offspring were weaned to an ad libitum diet and housed at similar temperatures as their mothers. Body weights and food intake were monitored. At 6 months of age, body composition and glucose tolerance test were determined, after which, brain and adipose tissue were collected for analysis. FR/CE and FR/TN offspring exhibited hyperphagia and were significantly heavier with increased adiposity as compared to their respective Controls. There was sex-specific effects of temperature in both groups. Male offspring at TN were heavier with increased body fat, though the food intake was decreased as compared to CE males. This was reflected by hypertrophic adipocytes and increased arcuate nucleus satiety/appetite ratio. In contrast, female offspring were not impacted by housing temperature. Thus, unlike female offspring, there was a significant interaction of diet and temperature evident in the male offspring with accentuated adverse effects evident in FR/TN males.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9998331 | PMC |
http://dx.doi.org/10.1017/S2040174422000502 | DOI Listing |
Sci Rep
December 2024
Centre of Excellence in Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal. Manipal Academy of Higher Education, Manipal, 576 104, India.
Cyclophosphamide (CY) exposure is known to affect the ovary and impair fertility. Clinically, treatment is generally given over multiple doses, but research models have generally used single doses. The relative effects of administering multiple small doses of CY in the prepubertal period are not elucidated.
View Article and Find Full Text PDFSci Rep
December 2024
School of BioSciences, The University of Melbourne, Melbourne, 3010, Australia.
Diethylstilbestrol (DES) is an estrogenic endocrine disrupting chemical (EDC) that was prescribed to millions of pregnant women worldwide, leading to increased rates of infertility in the exposed offspring. We have previously demonstrated that this reduced fertility persists for multiple generations in the mouse. However, how altered ovarian function contributes to this infertility is unknown.
View Article and Find Full Text PDFCancer Genomics Proteomics
December 2024
Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Background/aim: Neurofibromatosis type 1 (NF1) is a genetic disorder with an incidence of approximately one in 3,000. More than half of the patients have new de novo pathogenic variants of the NF1 gene. In most family cases, all family members share an identical NF1-variant.
View Article and Find Full Text PDFJ Xenobiot
December 2024
Faculty of Sciences (FC-UBI), University of Beira Interior, 6201-001 Covilhã, Portugal.
Dibutyl phthalate (DBP) is a low-molecular-weight phthalate commonly found in personal care products, such as perfumes, aftershaves, and nail care items, as well as in children's toys, pharmaceuticals, and food products. It is used to improve flexibility, make polymer products soft and malleable, and as solvents and stabilizers in personal care products. Pregnancy represents a critical period during which both the mother and the developing embryo can be significantly impacted by exposure to endocrine disruptors.
View Article and Find Full Text PDFDiseases
December 2024
Centro de Investigaciones Biomédicas, Doctorado en Ciencias Biomédicas, Universidad Veracruzana, Xalapa 91190, Mexico.
Introduction: Consuming hypercaloric diets during pregnancy induces metabolic, immune, and maternal intestinal dysbiosis disorders. These conditions are transferred to the offspring through the placenta and breastfeeding, increasing susceptibility to metabolic diseases. We investigated the effect of GG supplementation on offspring maternally programmed with a hypercaloric diet.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!