Approximately 60% of patients with large B cell lymphoma treated with chimeric antigen receptor (CAR) T cell therapies targeting CD19 experience disease progression, and neurotoxicity remains a challenge. Biomarkers associated with resistance and toxicity are limited. In this study, single-cell proteomic profiling of circulating CAR T cells in 32 patients treated with CD19-CAR identified that CD4Helios CAR T cells on day 7 after infusion are associated with progressive disease and less severe neurotoxicity. Deep profiling demonstrated that this population is non-clonal and manifests hallmark features of T regulatory (T) cells. Validation cohort analysis upheld the link between higher CAR T cells with clinical progression and less severe neurotoxicity. A model combining expansion of this subset with lactate dehydrogenase levels, as a surrogate for tumor burden, was superior for predicting durable clinical response compared to models relying on each feature alone. These data credential CAR T cell expansion as a novel biomarker of response and toxicity after CAR T cell therapy and raise the prospect that this subset may regulate CAR T cell responses in humans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10917089 | PMC |
http://dx.doi.org/10.1038/s41591-022-01960-7 | DOI Listing |
Uncovering mechanisms and predicting tumor cell responses to CAR-NK cytotoxicity is essential for improving therapeutic efficacy. Currently, the complexity of these effector-target interactions and the donor-to-donor variations in NK cell receptor (NKR) repertoire require functional assays to be performed experimentally for each manufactured CAR-NK cell product and target combination. Here, we developed a computational mechanistic multiscale model which considers heterogenous expression of CARs, NKRs, adhesion receptors and their cognate ligands, signal transduction, and NK cell-target cell population kinetics.
View Article and Find Full Text PDFImmune Netw
December 2024
Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea.
Chimeric antigen receptor-transduced T (CAR-T) cell therapy is an effective cell therapy against advanced hematological tumors. However, the use of autologous T cells limits its timely and universal generation. Allogeneic CAR-T cell therapy may be a good alternative as a ready-to-use therapeutic.
View Article and Find Full Text PDFFuture Oncol
January 2025
cKite, a Gilead Company, Santa Monica, CA, USA.
J Immunother Cancer
January 2025
Center for Advanced Innate Cell Therapy, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
The ability of immune cells to expand numerically after infusion distinguishes adoptive immunotherapies from traditional drugs, providing unique therapeutic advantages as well as the potential for unmanageable toxicities. Here, we describe a case of lethal hyperleukocytosis in a patient with neuroblastoma treated on phase 1 clinical trial (NCT03294954) with autologous natural killer T cells (NKTs) expressing a GD2-specific chimeric antigen receptor and cytokine interleukin 15 (GD2-CAR.15).
View Article and Find Full Text PDFLancet
January 2025
Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!