Aqueous zinc (Zn) chemistry features intrinsic safety, but suffers from severe irreversibility, as exemplified by low Coulombic efficiency, sustained water consumption and dendrite growth, which hampers practical applications of rechargeable Zn batteries. Herein, we report a highly reversible aqueous Zn battery in which the graphitic carbon nitride quantum dots additive serves as fast colloid ion carriers and assists the construction of a dynamic & self-repairing protective interphase. This real-time assembled interphase enables an ion-sieving effect and is found actively regenerate in each battery cycle, in effect endowing the system with single Zn conduction and constant conformal integrality, executing timely adaption of Zn deposition, thus retaining sustainable long-term protective effect. In consequence, dendrite-free Zn plating/stripping at ~99.6% Coulombic efficiency for 200 cycles, steady charge-discharge for 1200 h, and impressive cyclability (61.2% retention for 500 cycles in a Zn | |MnO full battery, 73.2% retention for 500 cycles in a Zn | |VO full battery and 93.5% retention for 3000 cycles in a Zn | |VOPO full battery) are achieved, which defines a general pathway to challenge Lithium in all low-cost, large-scale applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9468148PMC
http://dx.doi.org/10.1038/s41467-022-32955-0DOI Listing

Publication Analysis

Top Keywords

highly reversible
8
reversible aqueous
8
aqueous zinc
8
coulombic efficiency
8
retention 500
8
500 cycles
8
full battery
8
battery
5
self-repairing interphase
4
interphase reconstructed
4

Similar Publications

The combination of ultralong-acting neuromuscular block and subsequent on-demand rapid reversal may provide prolonged surgeries with improved conditions by omitting continuous or repetitive blocker administration, enabling a more stable and predictable hemodynamic profile and eliminating residual block. For this target, we prepared 19 imidazolium-incorporated tetracationic macrocycles. In vivo studies with rats revealed that one macrocycle (IMC-14) displays extremely high blocking activity.

View Article and Find Full Text PDF

The Jezero crater floor features a suite of related, iron-rich lavas that were examined and sampled by the Mars 2020 rover Perseverance, and whose textures, minerals, and compositions were characterized by the Planetary Instrument for X-ray Lithochemistry (PIXL). This suite, known as the Máaz formation (fm), includes dark-toned basaltic/trachy-basaltic rocks with intergrown pyroxene, plagioclase feldspar, and altered olivine and overlying trachy-andesitic lava with reversely zoned plagioclase phenocrysts in a K-rich groundmass. Feldspar thermal disequilibrium textures indicate that they were carried from their crustal staging area.

View Article and Find Full Text PDF

Blood microsampling (BμS) has recently emerged as an interesting approach in the analysis of endogenous metabolites but also in metabolomics applications. Their non-invasive way of use and the simplified logistics that they offer renders these technologies highly attractive in large-scale studies, especially the novel quantitative microsampling approaches such as VAMs or qDBS. Herein, we investigate the potential of BµS devices compared to the conventional plasma samples used in global untargeted mass spectrometry-based metabolomics of blood.

View Article and Find Full Text PDF

Since the biological activities and toxicities of 'foreign' and/or excess levels of metal ions are predominantly determined by their precise molecular nature, here we have employed high-resolution H NMR analysis to explore the 'speciation' of paramagnetic Ni(II) ions in human saliva, a potentially rich source of biomolecular Ni(II)-complexants/chelators. These studies are of relevance to the corrosion of nickel-containing metal alloy dental prostheses (NiC-MADPs) in addition to the dietary or adverse toxicological intake of Ni(II) ions by humans. Unstimulated whole-mouth human saliva samples were obtained from n = 12 pre-fasted (≥8 h) healthy participants, and clear whole-mouth salivary supernatants (WMSSs) were obtained from these via centrifugation.

View Article and Find Full Text PDF

Enhancing Virus Filter Performance Through Pretreatment by Membrane Adsorbers.

Membranes (Basel)

January 2025

Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA.

Virus filtration is used to ensure the high level of virus clearance required in the manufacture of biopharmaceutical products such as monoclonal antibodies. Flux decline during virus filtration can occur due to the formation of reversible aggregates consisting of self-assembled monomeric monoclonal antibody molecules, particularly at high antibody concentrations. While size exclusion chromatography is generally unable to detect these reversible aggregates, dynamic light scattering may be used to determine their presence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!