A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Structural plasticity driven by task performance leads to criticality signatures in neuromorphic oscillator networks. | LitMetric

Oscillator networks rapidly become one of the promising vehicles for energy-efficient computing due to their intrinsic parallelism of execution. The criticality property of the oscillator-based networks is regarded to be essential for performing complex tasks. There are numerous bio-inspired synaptic and structural plasticity mechanisms available, especially for spiking neural networks, which can drive the network towards the criticality. However, there is no solid connection between these self-adaption mechanisms and the task performance, and it is not clear how and why particular self-adaptation mechanisms contribute to the solution of the task, although their relation to criticality is understood. Here we propose an evolutionary approach for the structural plasticity that relies solely on the task performance and does not contain any task-independent adaptation mechanisms, which usually contribute towards the criticality of the network. As a driver for the structural plasticity, we use a direct binary search guided by the performance of the classification task that can be interpreted as an interaction of the network with the environment. Remarkably, such interaction with the environment brings the network to criticality, although this property was not a part of the objectives of the employed structural plasticity mechanism. This observation confirms a duality of criticality and task performance, and legitimizes internal activity-dependent plasticity mechanisms from the viewpoint of evolution as mechanisms contributing to the task performance, but following the dual route. Finally, we analyze the trained network against task-independent information-theoretic measures and identify the interconnection graph's entropy to be an essential ingredient for the classification task performance and network's criticality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9468161PMC
http://dx.doi.org/10.1038/s41598-022-19386-zDOI Listing

Publication Analysis

Top Keywords

task performance
24
structural plasticity
20
task
8
criticality
8
oscillator networks
8
criticality property
8
plasticity mechanisms
8
network criticality
8
mechanisms contribute
8
classification task
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!