AI Article Synopsis

  • Zwitterionic hydrogels offer excellent nonfouling and hemocompatibility but face challenges like weak mechanical strength and poor adhesion for biomedical device coatings.
  • Researchers developed a robust poly(carboxybetaine) and poly(sulfobetaine) hydrogel that exhibits strong mechanical properties and maintains stability under various stress tests like water flushing and bending.
  • The hydrogel-coated PVC tubing significantly reduces the foreign body response and prevents blood clot formation in animal models, providing valuable insights for improving coatings in blood-contacting medical devices.

Article Abstract

Zwitterionic hydrogels exhibit eminent nonfouling and hemocompatibility. Several key challenges hinder their application as coating materials for blood-contacting biomedical devices, including weak mechanical strength and low adhesion to the substrate. Here, we report a poly(carboxybetaine) microgel reinforced poly(sulfobetaine) (pCBM/pSB) pure zwitterionic hydrogel with excellent mechanical robustness and anti-swelling properties. The pCBM/pSB hydrogel coating was bonded to the PVC substrate via the entanglement network between the pSB and PVC chain. Moreover, the pCBM/pSB hydrogel coating can maintain favorable stability even after 21 d PBS shearing, 0.5 h strong water flushing, 1000 underwater bends, and 100 sandpaper abrasions. Notably, the pCBM/pSB hydrogel coated PVC tubing can not only mitigate the foreign body response but also prevent thrombus formation ex vivo in rats and rabbits blood circulation without anticoagulants. This work provides new insights to guide the design of pure zwitterionic hydrogel coatings for biomedical devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9468150PMC
http://dx.doi.org/10.1038/s41467-022-33081-7DOI Listing

Publication Analysis

Top Keywords

zwitterionic hydrogel
12
hydrogel coating
12
biomedical devices
12
pcbm/psb hydrogel
12
microgel reinforced
8
blood-contacting biomedical
8
pure zwitterionic
8
hydrogel
6
zwitterionic
4
reinforced zwitterionic
4

Similar Publications

A Wet-Adhesion and Swelling-Resistant Hydrogel for Fast Hemostasis, Accelerated Tissue Injury Healing and Bioelectronics.

Adv Mater

December 2024

Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China.

Hydrogel bioadhesives with adequate wet adhesion and swelling resistance are urgently needed in clinic. However, the presence of blood or body fluid usually weakens the interfacial bonding strength, and even leads to adhesion failure. Herein, profiting from the unique coupling structure of carboxylic and phenyl groups in one component (N-acryloyl phenylalanine) for interfacial drainage and matrix toughening as well as various electrostatic interactions mediated by zwitterions, a novel hydrogel adhesive (PAAS) is developed with superior tissue adhesion properties and matrix swelling resistance in challenging wet conditions (adhesion strength of 85 kPa, interfacial toughness of 450 J m, burst pressure of 514 mmHg, and swelling ratio of <4%).

View Article and Find Full Text PDF

In-situ-forming zwitterionic hydrogel does not ameliorate osteoarthritis in vivo, despite protective effects ex vivo.

Biomater Adv

December 2024

Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland. Electronic address:

Osteoarthritis (OA) is one of the most common degenerative joint diseases, with no effective therapeutic options available. In this study, we aimed to develop an interpenetrating, in-situ-forming hydrogel based on biocompatible and anti-fouling zwitterionic (ZI) polymers for early-stage OA treatment. We hypothesized that the anti-fouling properties of zwitterions could provide tissue protection, and the high charge density of these polymers would enhance tissue penetration and lubrication.

View Article and Find Full Text PDF

Polyzwitterions: controlled synthesis, soft materials and applications.

Soft Matter

December 2024

State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.

Polyzwitterions refer to polymers containing both positive and negative charged groups in one side chain, which have shown unique physicochemical properties and significant potential in diverse applications due to their amphiphilic and net-neutral charged properties. This review aims to highlight the recent advances in the design and synthesis of polyzwitterions including direct polymerization of zwitterionic monomers and deionization of polymers. Furthermore, the formation of polyzwitterion based soft materials such as nanoparticles by self-assembly, hydrogels, coatings and polyzwitterion brushes, as well as the influence of the microstructure on their properties and applications are discussed.

View Article and Find Full Text PDF

The tympanic membrane (TM) is constantly in a state of vibrating. However, there is currently a lack of drug-delivery scaffolds suitable for the dynamic environment of TM perforation. In this study, a mechano-responsive tough hydrogel was developed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!