The inspiratory rhythm generator, located in the brainstem preBötzinger complex (preBötC), is dependent on glutamatergic signaling and is affected profoundly by opioids. Here, we used organotypic slice cultures of the newborn mouse brainstem of either sex in combination with genetically encoded sensors for Ca, glutamate, and GABA to visualize Ca, glutamatergic and GABAergic signaling during spontaneous rhythm and in the presence of DAMGO. During spontaneous rhythm, the glutamate sensor SF-iGluSnFR.A184S revealed punctate synapse-like fluorescent signals along dendrites and somas in the preBötC with decay times that were prolonged by the glutamate uptake blocker (TFB-TBOA). The GABA sensor iGABASnFR showed a more diffuse fluorescent signal during spontaneous rhythm. Rhythmic Ca- and glutamate transients had an inverse relationship between the spontaneous burst frequency and the burst amplitude of the Ca and glutamate signals. A similar inverse relationship was observed when bath applied DAMGO reduced spontaneous burst frequency and increased the burst amplitude of Ca, glutamate, and GABA transient signals. However, a hypoxic challenge reduced both burst frequency and Ca transient amplitude. Using a cocktail that blocked glutamatergic, GABAergic, and glycinergic transmission to indirectly measure the release of glutamate/GABA in response to an electrical stimulus, we found that DAMGO reduces the release of glutamate in the preBötC but has no effect on GABA release. This suggest that the opioid mediated slowing of respiratory rhythm involves presynaptic reduction of glutamate release, which would impact the ability of the network to engage in recurrent excitation, and may result in the opioid-induced slowing of inspiratory rhythm. Opioids slow down breathing rhythm by affecting neurons in the preBötzinger complex (preBötC) and other brainstem regions. Here, we used cultured slices of the preBötC to better understand this effect by optically recording Ca, glutamate, and GABA transients during preBötC activity. Spontaneous rhythm showed an inverse relationship between burst frequency and burst amplitude in the Ca and glutamate signals. Application of the opioid DAMGO slowed the rhythm, with a concomitant increase in Ca, glutamate, and GABA signals. When rhythm was blocked pharmacologically, DAMGO reduced the presynaptic release of glutamate, but not GABA. These data suggest the mechanism of action of opioids involves presynaptic reduction of glutamate release, which may play an important role in the opioid-induced slowing of inspiratory rhythm.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9636991 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.1369-22.2022 | DOI Listing |
J Ethnopharmacol
January 2025
State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, 519031, China. Electronic address:
Ethnopharmacological Relevance: Jieyu I Formula (JY-I) is an improved version of the classic formula "Sini San" documented in the books Shanghan Lun, which is known for regulating the liver and treating depression. However, the disturbance of neuronal signal transmission in the neural circuit of the brain is closely related to the occurrence of depression, yet its neural mechanism is still unclear.
Aim Of The Study: This study aimed to observe the antidepressant effect of JY-I on depressed mice induced by lipopolysaccharide and its underlying central nervous system mechanisms, focusing on the prefrontal cortex (PFC) to lateral habenular nucleus (LHb) neural circuit in the depressed mice model.
Physiol Plant
January 2025
College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China.
The gene GAD1 encodes a glutamate decarboxylase, which is a rate-limiting enzyme for the biosynthesis of endogenous γ-aminobutyrate acid (GABA), but a potential role of GAD1 in regulating cadmium (Cd) tolerance needs to be further elucidated in plants. The objective of this study was to investigate Cd tolerance of creeping bentgrass (Agrostis stolonifera) and transgenic yeast (Saccharomyces cerevisiae) or Arabidopsis thaliana overexpressing AsGAD1. The Cd-tolerant creeping bentgrass cultivar LOFTSL-93 accumulated more endogenous GABA in relation to a significant upregulation of AsGAD1 in leaf and root than the Cd-sensitive W66569 in response to Cd stress.
View Article and Find Full Text PDFJ Food Sci Technol
February 2025
Food Science and Nutrition Department, School of Food Engineering, University of Campinas (UNICAMP), 80, Monteiro Lobato, Campinas, SP 13083-862 Brazil.
The aim of this study was to assess the gamma-aminobutyric acid (GABA) production in plant-based fermented beverages with kefir cultures (milk and water kefir). Water-soluble extracts of peanut and Brazil nut were evaluated as non-dairy substrates for the development of new bioactive beverages. A total of 12 formulations were developed and evaluated for their chemical composition, physical chemical characterization, and microbiological counts (aerobic mesophilic bacteria, lactobacilli, lactococci and yeasts).
View Article and Find Full Text PDFJ Adv Res
January 2025
Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China. Electronic address:
Introduction: Autism spectrum disorder (ASD) represents a multifaceted set of neurodevelopmental conditions marked by social deficits and repetitive behaviors. Astragaloside IV (ASIV), a natural compound derived from the traditional Chinese herb Astragali Radix, exhibits robust neuroprotective effects. However, whether ASIV can ameliorate behavioral deficits in ASD remains unknown.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
Chronic pain is a multidimensional experience that not only involves persistent nociception but is also frequently accompanied by significant emotional disorders, such as anxiety and depression, which complicate its management and amplify its impact. This review provides an in-depth exploration of the neurobiological mechanisms underlying the comorbidity of chronic pain and emotional disturbances. Key areas of focus include the dysregulation of major neurotransmitter systems (serotonin, gamma-aminobutyric acid, and glutamate) and the resulting functional remodeling of critical neural circuits implicated in pain processing, emotional regulation, and reward.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!