A pot experiment was conducted to investigate the effects of citric acid application and mowing frequency on the remediation of cadmium (Cd) contaminated soil by napier grass ( Schum). Three levels of citric acid were divided into three applications of 1.25, 2.5, and 5 mmol·kg. The mowing frequency of the plants was divided into no mowing, one mowing, and two mowing treatments. The results showed that:① 1.25 mmol·kg citric acid increased the biomass of the upper part of the plant by 39.11% with one mowing, and multiple mowing treatments and high citric acid application were not beneficial to the biomass increase. ② Both citric acid application and mowing had the effect of increasing the Cd content in stems and leaves, and Cd content in stems harvested in the last mown crop was larger and increased by approximately six times under the 5 mmol·kg citric acid application. ③ Citric acid application and mowing reduced the rhizosphere soil pH and organic matter and also reduced the total soil Cd content and TCLP-Cd content by a maximum of 14.29% and 10.17%, respectively. ④ Under the 1.25 mmol·kgcitric acid application and one mowing treatment (L1), the best Cd extraction by Napier grass was achieved with 6.95 mg·plant of above-ground parts, accounting for 9.38% of the total Cd content in the potted test soil. Therefore, the L1 treatment can be considered to improve the remediation efficiency when using napier grass to remediate Cd-contaminated soil in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13227/j.hjkx.202112028 | DOI Listing |
Environ Pollut
December 2024
College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; Faculty of Architecture and Engineering, Guizhou Polytechnic of Construction, Guiyang 551400, China.
Although the use of foliar spraying with organic matter has been extensively studied and applied to reduce heavy metals in plants, research on its application for reducing mercury (Hg) accumulation in plants, particularly the more toxic methylmercury (MeHg), remains scarce. Furthermore, previous researches on the barrier mechanisms of foliar spraying primarily concentrated on the effects of spraying agents on plant physiological and biochemical indicators, with limited focus on their impacts on soil environment. Herein, the dynamic effects and mechanisms of organic foliar spraying materials, including earthworm liquid fertilizer (ELF), Tween 80 (T80), and citric acid (CA), on soil Hg methylation and accumulation in lettuce were investigated using pot experiment.
View Article and Find Full Text PDFEnviron Res
December 2024
Guangxi Colleges and Universities Key Laboratory of Environmental-friendly Materials and Ecological Remediation, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning 530006, China.
Water pollution caused by antibiotics is considered a major and growing issue. To address this challenge, high-performance copper vanadate-based biochar (CuVO/BC) nanocomposite photocatalysts were prepared to develop an efficient visible light-driven photocatalytic system for the remediation of tetracycline (TC) contaminated water. The effects of photocatalyst mass, solution pH, pollutant concentration, and common anions on the TC degradation were investigated in detail.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Key Laboratory of the State Forestry and Grassland Administration for the Cultivation of Forests in the Lower Reaches of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, China.
How different stress responses by male and female plants are influenced by interactions with rhizosphere microbes remains unclear. In this study, we employed poplar as a dioecious model plant and quantified biotic associations between microorganisms to explore the relationship between microbial associations and plant adaptation. We propose a health index (HI) to comprehensively characterize the physiological characteristics and adaptive capacity of plants under stress.
View Article and Find Full Text PDFFront Pharmacol
December 2024
School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China.
Introduction: The mechanism of tannic acid (TA) intervention on methicillin-resistant (MRSA, USA 300) biofilm formation was explored using proteomics.
Methods: The minimum inhibitory concentration (MIC) of TA against the MRSA standard strain USA 300 was determined by two-fold serial dilution of the microbroth. The effects of TA were studied using crystal violet staining.
World J Microbiol Biotechnol
January 2025
State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, Hubei, 430062, P.R. China.
Ectoine is a high-value protective agent with extensive applications in the fields of fine chemicals and biopharmaceuticals, and it is naturally synthesized by Halomonas in extreme environment, however, the current production level cannot meet the growing market demand. In this study, we aimed to develop an efficient and environmentally friendly ectoine production process using Bacillus licheniformis as the host organism. Through introducing ectoine synthetase gene cluster ectABC from Halomonas elongate, as well as optimizing ectABC expression by promoter and 5'-UTR optimization, ectoine titer was increased to 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!