Engineering solutions to recover phosphorus from municipal wastewater are required to close the anthropogenic phosphorus cycle. After chemical phosphorus elimination by iron, the ferrous iron‑phosphorus mineral vivianite forms in digested sludge, and its separation is being researched at the pilot scale. In this study, sludge samples from 16 wastewater treatment plants (WWTPs) demonstrated that phosphorus bound to biomass and redox-sensitive iron in activated sludge was transformed into other phosphorus binding forms, including vivianite, during digestion. Vivianite quantity was approximated using X-ray diffraction and two sequential extractions. These three independent methods of approximating vivianite quantity were closely related confirming their relationship to the vivianite content in the samples. The digested sludge from three WWTPs exhibited comparatively high levels of vivianite-bound phosphorus approximated between 31 % and 51 % of total phosphorus. The controlling factors of vivianite formation were investigated in order to enhance its formation in digested sludge and increase the amount of phosphorus recoverable as vivianite. They were identified using single and multivariate correlation (MLR), considering the sludge properties, sludge composition, and process parameters within the operating range of the 16 WWTPs. Increasing iron content was verified as the primary predictor of significantly increased vivianite formation (MLR: p < 0.001). In addition, increasing sulphur content was found to be an additional significant factor that decreased vivianite formation (MLR: p < 0.05). Furthermore, a comparison of plants using sulphur-free (FeCl and FeCl) and sulphur-containing (FeSO and FeClSO) precipitants indicated that the latter could increase the sulphur content in digested sludge (one-tailed Welch two-sample t-test: t(14.6) = 2.3, p = 0.02). Thus, by increasing the sulphur content, the use of sulphur-comprising precipitants may counteract vivianite formation, whereas sulphur-free precipitants may facilitate it and, hence, promote vivianite recovery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.158663 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!