Effect of glioma-derived immunoglobulin on biological function of glioma cells.

Eur J Cancer

Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China. Electronic address:

Published: November 2022

Introduction: Glioma is the most common and most invasive primary central nervous system tumour, and it is urgent to develop new specific therapeutic targets. Studies have confirmed that epithelial-derived tumour cells promote tumour cell proliferation and metastasis by secreting a large number of immunoglobulins (Igs), but the role of tumour-derived Igs in glioma has never been reported.

Methods: The Gene Expression Profiling Interactive Analysis and Chinese Glioma Genome Atlas databases were used to analyse the Ig transcription and its correlation with the prognosis of patients with glioma. Immunohistochemistry and immunofluorescence were used to detect the protein expression of IgG and IgM in the glioma tissues of patients and glioma cell lines. When IgG was knocked down by small interfering RNA or knocked out by CRISPR-Cas9, the function of proliferation and migration of glioma cells were analysed by CCK-8, clone formation, wound healing, and transwell assays. Changes in proteins and their phosphorylation in signalling pathways were detected by western blotting. The nude mouse subcutaneous tumour-bearing model was established to analyse the effect of IgG in vivo.

Results: The transcriptional level of IgG was pretty high in glioma tissues and was positively correlated with high WHO grade, recurrence, and poor prognosis. The expression of IgG and IgM was found in tumour tissues and human glioma cell lines U87 and U251, and the main expression form was secreted. Decreased IgG inhibited the proliferation and migration of glioma cells. Knockout or knockdown of IgG downregulated the phosphorylation of the key molecules in the MAPK and PI3K/Akt pathway through the HGF/SF-Met or FAK/Src pathway. In vivo tumourigenesis mouse model confirmed that reduced IgG expression inhibited glioma growth.

Conclusion: Ig was expressed in glioma tissues and cell lines, and a high expression level predicted a poor prognosis of patients. Glioma-derived IgG promoted glioma cell proliferation and migration through the HGF/SF-Met or FAK/Src pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejca.2022.08.006DOI Listing

Publication Analysis

Top Keywords

glioma
14
glioma cells
12
glioma tissues
12
glioma cell
12
cell lines
12
proliferation migration
12
igg
9
cell proliferation
8
prognosis patients
8
patients glioma
8

Similar Publications

The mannose receptor (CD206, expressed by the gene ) is a surface marker overexpressed by anti-inflammatory and pro-tumoral macrophages. As such, CD206 macrophages play key roles in the immune response to different pathophysiological conditions and represent a promising diagnostic and therapeutic target. However, methods to specifically target these cells remain challenging.

View Article and Find Full Text PDF

Monitoring of cancer ferroptosis with [F]hGTS13, a system xc- specific radiotracer.

Theranostics

January 2025

Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA, 94305, USA.

Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in adults, characterized by resistance to conventional therapies and poor survival. Ferroptosis, a form of regulated cell death driven by lipid peroxidation, has recently emerged as a promising therapeutic target for GBM treatment. However, there are currently no non-invasive imaging techniques to monitor the engagement of pro-ferroptotic compounds with their respective targets, or to monitor the efficacy of ferroptosis-based therapies.

View Article and Find Full Text PDF

The FAT atypical cadherin 1 (FAT1) gene is the ortholog of the fat gene and encodes the protocadherin FAT1. FAT1 belongs to the cadherin superfamily, a group of full-length membrane proteins that contain cadherin-like repeats. In various types of human cancer, FAT1 is one of the most commonly mutated genes, and is considered to be an emerging cancer biomarker and a potential target for novel therapies.

View Article and Find Full Text PDF

The clinical efficacy of isocitrate dehydrogenase (IDH) inhibitors in the treatment of patients with grade 2 IDH-mutant (mIDH) gliomas is a significant therapeutic advancement in neuro-oncology. It expands treatment options beyond traditional radiation therapy and cytotoxic chemotherapy, which may lead to significant long-term neurotoxic effects while extending patient survival. The INDIGO study demonstrated that vorasidenib, a pan-mIDH inhibitor, improved progression-free survival for patients with grade 2 mIDH gliomas following surgical resection or biopsy compared to placebo and was well tolerated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!