Pharmacologic inhibition of the oncogenic protein kinases using small molecules is a promising strategy to combat several human malignancies. CDK1 is an example of such a valuable target for the management of pancreatic ductal adenocarcinomas (PDAC); its overexpression in PDAC positively correlates with the size, histological grade and tumor aggressiveness. Here we report the identification of novel series of 1-piperazinyl-4-benzylphthalazine derivatives (8a-g, 10a-i and 12a-d) as promising anticancer agents with CDK1 inhibitory activity. The anti-proliferative activity of these agents was first screened on a panel of 11 cell lines representing 5 cancers (pancreas, melanoma, leukemia, colon and breast), and then confirmed on two CDK1-overexpressing PDAC cell lines (MDA-PATC53 and PL45 cells). Phthalazines 8g, 10d and 10h displayed potent activity against MDA-PATC53 (IC = 0.51, 0.88 and 0.73 μM, respectively) and PL45 (IC = 0.74, 1.14 and 1.00 μM, respectively) cell lines. Furthermore, compounds 8g, 10d and 10h exhibited potent and selective inhibitory activity toward CDK1 with IC spanning in the range 36.80-44.52 nM, whereas they exerted weak inhibitory effect on CDK2, CDK5, AXL, PTK2B, FGFR, JAK1, IGF1R and BRAF kinases. Western blotting of CDK1 in MDA-PATC53 cells confirmed the ability of target phthalazines to diminish the CDK1 levels, and cell cycle analyses revealed their ability to arrest the cell cycle at G2/M phase. In conclusion, a panel of potent and selective CDK1 inhibitors were identified which can serve as lead compounds for designing further CDK1 inhibitors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2022.114704 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!