Specific activation of hypoxia-inducible factor-2α by propionate metabolism via a β-oxidation-like pathway stimulates MUC2 production in intestinal goblet cells.

Biomed Pharmacother

Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul 02841, Republic of Korea; School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul 02841, Republic of Korea; Department of Laboratory Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea. Electronic address:

Published: November 2022

Microbiota-derived short-chain fatty acids (SCFAs) are known to stimulate mucin expression in the intestine, which contributes to the gut mucosal immune responses, and the gut mucosal immune system extends to the brain and other organs through several axes. Hypoxia-inducible factors (HIFs), especially HIF-1α, are known to act as the master regulator of mucin expression, however, underlying mechanism of mucin expression during hypoxia by SCFAs remains unclear. In this study, we investigated the mechanism of MUC2 expression by propionate, an SCFA, in intestinal goblet cells. The real time oxygen consumption rate (OCR) and ATPase activity were measured to investigate the induction of hypoxia by propionate. Using 2-dimensional electrophoresis (2-DE), microarray analysis, and siRNA-induced gene silencing, we found that propionate is metabolized via a β-oxidation-like pathway instead of the vitamin B-dependent carboxylation pathway (also known as the methylmalonyl pathway). We verified the results by analyzing several intermediates in the pathway using LC-MS and GC-MS. Propionate metabolism via the β-oxidation-like pathway leads to the depletion of oxygen and thereby induces hypoxia. Analysis of HIFs revealed that HIF-2α is the primary HIF whose activation is induced by propionate metabolism in a hypoxic environment and that HIF-2α regulates the expression of MUC2. Thus, hypoxia induced during propionate metabolism via a β-oxidation-like pathway specifically activates HIF-2α, stimulating MUC2 production in LS 174 T goblet cells. Our findings show that propionate-induced selective HIF-2α stimulation contributes to intestinal mucosal defense.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2022.113672DOI Listing

Publication Analysis

Top Keywords

propionate metabolism
16
β-oxidation-like pathway
16
metabolism β-oxidation-like
12
goblet cells
12
mucin expression
12
muc2 production
8
intestinal goblet
8
gut mucosal
8
mucosal immune
8
induced propionate
8

Similar Publications

The production of biodegradable and biobased polymers is one way to overcome the present plastic pollution while using cheap and abundant feedstocks. Polyhydroxyalkanoates are a promising class of biopolymers that can be produced by various microorganisms. Within the production process, batch-to-batch variation occurs due to changing feedstock composition when using waste streams, slightly different starting conditions, or biological variance of the microorganisms.

View Article and Find Full Text PDF

The study investigated the effect of dietary inclusion of high amylose cornstarch (HA-starch) on cecal microbiota composition and volatile fatty acid (VFA) concentrations in weanling pigs fed high levels of cold-pressed canola cake (CPCC). Weaned pigs (240 mixed sex; 7.1 ± 1.

View Article and Find Full Text PDF

Bacterial indole-3-propionic acid inhibits macrophage IL-1β production through targeting methionine metabolism.

Sci China Life Sci

January 2025

State Key Laboratory of Livestock and Poultry Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.

The gut microbiota plays key roles in host health by shaping the host immune responses through their metabolites, like indole derivatives from tryptophan. However, the direct role of these indole derivatives in macrophage fate decision and the underlying mechanism remains unknown. Here, we found that bacterial indole-3-propionic acid (IPA) downregulates interleukin-1beta (IL-1β) production in M1 macrophages through inhibition of nuclear factor-kappa B (NF-κB) signaling.

View Article and Find Full Text PDF

Yeast-based sensors have shown great applicability for deorphanization of G protein-coupled receptors (GPCRs) and screening of ligands targeting these. A GPCR of great interest is free fatty acid 2 receptor (FFA2R), for which short-chain fatty acids such as propionate and acetate are agonists. FFA2R regulates a wide array of downstream receptor signaling pathways in both adipose tissue and immune cells and has been recognized as a promising therapeutic target, having been implicated in several metabolic and inflammatory diseases.

View Article and Find Full Text PDF

Decipher syntrophies and adaptive response towards enhancing conversion of propionate to methane under psychrophilic condition.

Water Res

January 2025

Laboratory of Biomass Bio-chemical Conversion, Guang Zhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China. Electronic address:

Propionate is a key intermediate in anaerobic digestion (AD) under low operational temperatures, which can destabilize the process. In this study, the supplementation of syntrophic cold-tolerant consortia and trace elements significantly improved the performance of psychrophilic (20 °C) reactor, increasing methane production to 91 % of mesophilic reactor levels and reducing propionate concentrations to less than 2 % of those in untreated psychrophilic reactors. Multi-omics analyses revealed that psychrophilic conditions downregulated the methylmalonyl-CoA and aceticlastic methanogenesis pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!