MutS initiates mismatch repair by recognizing mismatches in newly replicated DNA. Specific interactions between MutS and mismatches within double-stranded DNA promote ADP-ATP exchange and a conformational change into a sliding clamp. Here, we demonstrated that MutS from Pseudomonas aeruginosa associates with primed DNA replication intermediates. The predicted structure of this MutS-DNA complex revealed a new DNA binding site, in which Asn 279 and Arg 272 appeared to directly interact with the 3'-OH terminus of primed DNA. Mutation of these residues resulted in a noticeable defect in the interaction of MutS with primed DNA substrates. Remarkably, MutS interaction with a mismatch within primed DNA induced a compaction of the protein structure and impaired the formation of an ATP-bound sliding clamp. Our findings reveal a novel DNA binding mode, conformational change and intramolecular signaling for MutS recognition of mismatches within primed DNA structures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.dnarep.2022.103392 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!