In selective macroautophagy/autophagy, autophagy receptors are key molecules that determine cargo specificity. Most known autophagy receptors only exist in some but not all eukaryotic lineages. The exception is Nbr1 proteins, which are conserved across eukaryotes. The four-tryptophan (FW) domain is the hallmark of Nbr1 proteins, but its function has been unknown. Our recent study found that the FW domain in the Nbr1 protein of the filamentous fungus binds the α-mannosidase Ams1, a known selective autophagy cargo in budding yeast and fission yeast. Furthermore, we showed that when Nbr1 and Ams1 are expressed heterologously in fission yeast, FW domain-mediated binding can promote autophagic delivery of Ams1 into vacuoles. We solved the structure of the FW-Ams1 complex and revealed the structural mechanism underlying Ams1 recognition by the FW domain. The -terminal di-glycine peptide of Ams1 fits into a conserved pocket of the FW domain. We propose that this cargo-binding mechanism may also be employed by Nbr1 proteins in other eukaryotes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10012884PMC
http://dx.doi.org/10.1080/15548627.2022.2123636DOI Listing

Publication Analysis

Top Keywords

nbr1 proteins
12
autophagy receptors
8
fission yeast
8
nbr1
5
ams1
5
hallmark domain
4
domain oldest
4
autophagy
4
oldest autophagy
4
autophagy receptor
4

Similar Publications

Advances in Aggrephagy: Mechanisms, Disease Implications, and Therapeutic Strategies.

J Cell Physiol

January 2025

Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.

The accumulation of misfolded proteins within cells leads to the formation of protein aggregates that disrupt normal cellular functions and contribute to a range of human pathologies, notably neurodegenerative disorders. Consequently, the investigation into the mechanisms of aggregate formation and their subsequent clearance is of considerable importance for the development of therapeutic strategies. The clearance of protein aggregates is predominantly achieved via the autophagy-lysosomal pathway, a process known as aggrephagy.

View Article and Find Full Text PDF

Lysosomes are the major cellular organelles responsible for nutrient recycling and degradation of cellular material. Maintenance of lysosomal integrity is essential for cellular homeostasis and lysosomal membrane permeabilization (LMP) sensitizes toward cell death. Damaged lysosomes are repaired or degraded via lysophagy, during which glycans, exposed on ruptured lysosomal membranes, are recognized by galectins leading to K48- and K63-linked poly-ubiquitination (poly-Ub) of lysosomal proteins followed by recruitment of the macroautophagic/autophagic machinery and degradation.

View Article and Find Full Text PDF

Novel exploitation of autophagy by tombusviruses.

Virology

December 2024

Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, KY, USA.

Positive-strand (+)RNA viruses are major pathogens of humans, animals and plants. This review summarizes the complex interplay between the host autophagy pathway and Tomato bushy stunt virus (TBSV) replication. Recent discoveries with TBSV have revealed virus-driven exploitation of autophagy in multiple ways that contributes to the unique phospholipid composition of viral replication organellar (VROs) membranes.

View Article and Find Full Text PDF

Autophagy modulates male fertility in arabidopsis.

Autophagy

December 2024

Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, China.

Macroautophagy/autophagy is a highly conserved catabolic process in eukaryotes and plays pivotal roles in regulating male fertility and sexual reproduction. In metazoans, mutations in core ATG (autophagy related) proteins frequently result in severe defects in sperm formation and maturation, resulting in male sterility. In contrast, autophagy has traditionally been considered dispensable for reproduction in , as most mutants can complete fertilization and produce viable progeny without apparent reproductive defects.

View Article and Find Full Text PDF

Sugar beet ( L.) is a significant global crop for sugar production, with nitrogen playing a crucial role in its growth, development, and sugar yield. Autophagy facilitates nutrient reabsorption and recycling under nutrient stress by degrading intracellular components, thereby enhancing plant nitrogen use efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!