A high dynamic range (HDR) image is commonly used to reveal stereo illumination, which is crucial for generating high-quality realistic rendering effects. Compared to the high-cost HDR imaging technique, low dynamic range (LDR) imaging provides a low-cost alternative and is preferable for interactive graphics applications. However, the limited LDR pixel bit depth significantly bothers accurate illumination estimation using LDR images. The conflict between the realism and promptness of illumination estimation for realistic rendering is yet to be resolved. In this paper, an efficient method that accurately infers illuminations of real-world scenes using LDR panoramic images is proposed. It estimates multiple lighting parameters, including locations, types and intensities of light sources. In our approach, a new algorithm that extracts illuminant characteristics during the exposure attenuation process is developed to locate light sources and outline their boundaries. To better predict realistic illuminations, a new deep learning model is designed to efficiently parse complex LDR panoramas and classify detected light sources. Finally, realistic illumination intensities are calculated by recovering the inverse camera response function and extending the dynamic range of pixel values based on previously estimated parameters of light sources. The reconstructed radiance map can be used to compute high-quality image-based lighting of virtual models. Experimental results demonstrate that the proposed method is capable of efficiently and accurately computing comprehensive illuminations using LDR images. Our method can be used to produce better realistic rendering results than existing approaches.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TVCG.2022.3205614DOI Listing

Publication Analysis

Top Keywords

realistic rendering
16
light sources
16
illumination estimation
12
dynamic range
12
accurate illumination
8
estimation ldr
8
ldr panoramic
8
panoramic images
8
ldr images
8
ldr
7

Similar Publications

Arthroscopy is a minimally invasive surgical procedure used to diagnose and treat joint problems. The clinical workflow of arthroscopy typically involves inserting an arthroscope into the joint through a small incision, during which surgeons navigate and operate largely by relying on their visual assessment through the arthroscope. However, the arthroscope's restricted field of view and lack of depth perception pose challenges in navigating complex articular structures and achieving surgical precision during procedures.

View Article and Find Full Text PDF

Hematuria in the ER patient: optimizing detection of upper tract urothelial - A pictorial essay.

Emerg Radiol

January 2025

Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, 601 North Caroline Street, Baltimore, MD, 21287-0801, USA.

Upper tract urothelial carcinoma (UTUC) is a rare and challenging subset of the more frequently encountered urothelial carcinomas (UCs), comprising roughly 5-7% of all UCs and less than 10% of all renal tumors. Hematuria is a common presenting symptom in the emergency setting, often prompting imaging to rule out serious etiologies, with UTUC especially posing as a diagnostic challenge. These UTUC lesions of the kidney and ureter are often small, mimicking other pathologies, and are more aggressive than typical UC of the bladder, emphasizing the importance of timely and accurate diagnosis.

View Article and Find Full Text PDF

This case study highlights the use of cinematic rendering (CR) in preoperative planning for the excision of a cyst in the oral and maxillofacial region of a 60-year-old man. The patient presented with a firm, non-tender mass in the right cheek, clinically suspected to be an epidermoid cyst. Conventional imaging, including dental magnetic resonance imaging (MRI) protocols, confirmed the lesion's size, location, and benign nature.

View Article and Find Full Text PDF

Generating unseen diseases patient data using ontology enhanced generative adversarial networks.

NPJ Digit Med

January 2025

Institute of Data Science, Faculty of Science and Engineering, Maastricht University, Maastricht, the Netherlands.

Generating realistic synthetic health data (e.g., electronic health records), holds promise for fundamental research, AI model development, and enhancing data privacy safeguards.

View Article and Find Full Text PDF

Background And Objective: Cerebral aneurysms occur as balloon-like outpouchings in an artery, which commonly develop at the weak curved regions and bifurcations. When aneurysms are detected, understanding the risk of rupture is of immense clinical value for better patient management. Towards this, Fluid-Structure Interaction (FSI) studies can improve our understanding of the mechanics behind aneurysm initiation, progression, and rupture.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!