Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Anaplastic large cell lymphoma (ALCL) is a CD30-positive non-Hodgkin's T‑cell lymphoma. Despite the implementation of CD30 antibody-drug conjugate-targeted therapy into front-line treatment regimens, the prognosis of some subtypes of the disease remains unsatisfactory. In the relapsed/refractory setting, effective second-line treatment options are still lacking. However, it has been reported that blockade of direct downstream targets of activator protein‑1 (AP-1) transcription factors, which are highly dysregulated in ALCL, results in complete and sustained remission in late-stage relapsed/refractory anaplastic lymphoma kinase (ALK)-positive ALCL patients. Moreover, it has been identified that involvement of the BATF3/AP‑1 module promotes lymphomagenesis via oncogenic BATF3/IL-2/IL-2R signaling through hyperphosphorylation of ERK1/2, STAT1, and STAT5 in ALCL cells regardless of their ALK status. Therefore, targeting BATF3/IL-2/IL-2R signaling may represent a novel therapeutic alternative for ALCL patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00292-022-01108-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!