Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Improving the photoluminescence (PL) efficiency of organic luminescent molecules is still a great challenge. Herein, a novel zero-dimensional Sn(IV)-based halide (CHN)SnCl is prepared by assembling inactive quinoline cations and stable [SnCl] polyhedra. Experimental characterizations and theoretical calculations show that the blue emission of (CHN)SnCl centered at 433 nm is derived from the organic cations. Surprisingly, the PL efficiency of the as-prepared halide is nearly 50 times higher than that of the organic precursor and exhibits ultrahigh stability. Structural analysis shows that the introduction of inorganic clusters regulates the stacking mode of organic components and forms hydrogen bonds. This strong intermolecular interaction enhances the structural rigidity of (CHN)SnCl, inhibits concentration quenching and vibrational dissipation, and thus significantly improves the PL efficiency and stability of the organic cations. This work provides an important way to improve the PL performance and stability of organic species by constructing efficient intermolecular interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.2c02413 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!