Using ultrasound biofeedback in conjunction with verbal cueing can increase muscle thickness more than verbal cueing alone and may augment traditional rehabilitation techniques in an athletic, physically active population. Brightness mode (B-mode) ultrasound can be applied using frame-by-frame analysis synchronized with video to understand muscle thickness changes during these dynamic tasks. Visual biofeedback with ultrasound has been established in static positions for the muscles of the lateral abdominal wall. However, by securing the transducer to the abdomen using an elastic belt and foam block, biofeedback can be applied during more specific tasks prevalent in lifetime sports, such as golf. To analyze muscle activity during a golf swing, muscle thickness changes can be compared. The thickness must increase throughout the task, indicating that the muscle is more active. This methodology allows clinicians to immediately replay ultrasound videos for patients as a visual tool to instruct proper activity of the muscles of interest. For example, ultrasound can be used to target the external and internal obliques, which play an important role in swinging a golf club or any other rotational sport or activity. This methodology aims to increase oblique muscle thickness during the golf swing. Additionally, the timing of muscle contraction can be targeted by instructing the patient to contract the abdominal muscles at specific time points, such as the beginning of the downswing, with the goal of improving muscle firing patterns during tasks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/64333 | DOI Listing |
J Cosmet Dermatol
January 2025
Division in Anatomy and Developmental Biology, Department of Oral Biology, Human Identification Research Institute, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, South Korea.
Objective: Ultrasonographic examination is easy, fast, safe, and used in various fields; however, its application to the facial area has been limited. Complex anatomical structures are mixed within thin, soft tissues in the facial region; therefore, understanding their structural characteristics is crucial. This study aimed to use ultrasonography to obtain information on the layered structure and soft tissue thickness of the eye area around the orbicularis oculi muscle and provide guidance for clinical practice.
View Article and Find Full Text PDFFront Physiol
January 2025
College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.
Objective: Lumbo-pelvic-hip complex muscle training is considered a crucial component of exercise rehabilitation for postpartum women with pelvic girdle pain (PGP). However, there is a paucity of research evidence regarding the morphological changes and contraction function of these muscles in postpartum women with PGP. Understanding the alterations in lumbo-pelvic-hip complex muscles function associated with PGP, is crucial for tailoring effective rehabilitation strategies and promoting optimal postpartum recovery.
View Article and Find Full Text PDFBMC Ophthalmol
January 2025
Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, 233004, China.
Objectives: To evaluate the effects of short-acting cycloplegic agents, tropicamide and compound tropicamide, on ocular biological parameters and choroid thickness.
Methods: In this study, seventy pediatric subjects aged 6 to 13 years were randomly assigned to two groups: the tropicamide group and compound tropicamide group. Ocular biological parameters and choroidal thickness (CT) and subfoveal choroid thickness (SFCT) were measured in both groups and were retested 40 min after drug administration.
J Sport Rehabil
January 2025
Laboratory of Neuromechanics, Department of Physical Education and Sport Sciences, Aristotle University of Thessaloniki, Serres, Greece.
Context: Intermittent floor trunk extensions are popular exercises in group fitness programs. The aim of this study was to investigate whether fewer repetitions of longer isometric trunk extension efforts compared with more repetitions of shorter isometric contractions have different acute effects on muscle thickness and activation as well as perceived exertion.
Design: This study followed a cross-sectional design.
Biophys Rev
December 2024
Randall Centre for Cell & Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, UK.
Calcium binding to troponin triggers the contraction of skeletal and heart muscle through structural changes in the thin filaments that allow myosin motors from the thick filaments to bind to actin and drive filament sliding. Here, we review studies in which those changes were determined in demembranated fibres of skeletal and heart muscle using fluorescence for in situ structure (FISS), which determines domain orientations using polarised fluorescence from bifunctional rhodamine attached to cysteine pairs in the target domain. We describe the changes in the orientations of the N-terminal lobe of troponin C (TnC) and the troponin IT arm in skeletal and cardiac muscle cells associated with contraction and compare the orientations with those determined in isolated cardiac thin filaments by cryo-electron microscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!