The opportunistic bacterium Pseudomonas aeruginosa secretes the quorum-sensing molecule N-(3-oxododecanoyl)-l-homoserine lactone (C12) to co-ordinate gene expression profiles favorable for infection. Recent studies have demonstrated that high concentrations of C12 impair many aspects of host cell physiology, including mitochondrial function and cell viability. The cytotoxic effects of C12 are mediated by the lactonase enzyme, Paraoxonase 2 (PON2), which hydrolyzes C12 to a reactive metabolite. However, the influence of C12 on host cell physiology at concentrations observed in patients infected with P. aeruginosa is largely unknown. Since the primary site of P. aeruginosa infections is the mammalian airway, we sought to investigate how PON2 modulates the effects of C12 at subtoxic concentrations using immortalized murine tracheal epithelial cells (TECs) isolated from wild-type (WT) or PON2-knockout (PON2-KO) mice. Our data reveal that C12 at subtoxic concentrations disrupts mitochondrial bioenergetics to hinder cellular proliferation in TECs expressing PON2. Subtoxic concentrations of C12 disrupt normal mitochondrial network morphology in a PON2-dependent manner without affecting mitochondrial membrane potential. In contrast, higher concentrations of C12 depolarize mitochondrial membrane potential and subsequently trigger caspase signaling and apoptotic cell death. These findings demonstrate that different concentrations of C12 impact distinct aspects of host airway epithelial cell physiology through PON2 activity in mitochondria.

Download full-text PDF

Source
http://dx.doi.org/10.1042/BCJ20220100DOI Listing

Publication Analysis

Top Keywords

concentrations c12
16
cell physiology
12
subtoxic concentrations
12
c12
10
tracheal epithelial
8
epithelial cells
8
aspects host
8
host cell
8
effects c12
8
c12 subtoxic
8

Similar Publications

Quorum sensing signals of the grapevine crown gall bacterium, sp. Rr2-17: use of inducible expression and polymeric resin to sequester acyl-homoserine lactones.

PeerJ

December 2024

The Thomas H. Gosnell School of Life Sciences, Biotechnology and Molecular Bioscience Program, College of Science, Rochester Institute of Technology, Rochester, New York, United States.

Background: A grapevine crown gall tumor strain, sp. strain Rr2-17 was previously reported to accumulate copious amounts of diverse quorum sensing signals during growth. Genome sequencing identified a single luxI homolog in strain Rr2-17, suggesting that it may encode for a AHL synthase with broad substrate range, pending functional validation.

View Article and Find Full Text PDF

Evaluation of Fifteen 5,6-Dihydrotetrazolo[1,5-]quinazolines Against : Integrating In Vitro Studies, Molecular Docking, QSAR, and In Silico Toxicity Assessments.

J Fungi (Basel)

November 2024

Department of Biosciences and Biotechnologies, Graduate School of Bioresources and Bioenvironment Sciences, Kyushu University, 744 W5-674, Motooka Nishi-ku, Fukuoka 819-0395, Japan.

(), the second most prevalent Candida pathogen globally, has emerged as a major clinical threat due to its ability to develop high-level azole resistance. In this study, two new 5,6-dihydrotetrazolo[1,5-]quinazoline derivatives ( and ) were synthesized and characterized using IR, LC-MS, H, and C NMR spectra. Along with 13 previously reported analogues, these compounds underwent in vitro antifungal testing against clinical isolates using a serial dilution method (0.

View Article and Find Full Text PDF

This study focuses on a novel lipase from Bacillus licheniformis IBRL-CHS2. The lipase gene was cloned into the pGEM-T Easy vector, and its sequences were registered in GenBank (KU984433 and AOT80658). It was identified as a member of the bacterial lipase subfamily 1.

View Article and Find Full Text PDF

This study explores the bioactive potential of banana leaf extracts and their innovative integration into knitted hemp fabrics. To obtain the extracts, distinct extraction methodologies were employed, namely conventional extraction, ultrasound-assisted extraction, and pressurized-liquid extraction. Aqueous and hydroethanolic solvents, namely 20% (/) and 50% (/), were employed during the extraction process.

View Article and Find Full Text PDF

Bile acid salts are steroid biosurfactants that build relatively small micelles compared to surfactants with an alkyl chain due to the rigid conformation of the steroid skeleton. In order to increase the capacity of micellar solubilization of the hydrophobic molecular guest, certain C7 alkyl derivatives were synthesized. Namely, introducing an alkyl group in the C7 position of the steroid skeleton results in a more effective increase in the micelle's hydrophobic domain (core) than the introduction in the C3 position.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!