Non-covalent metalation of carbon nitride for photocatalytic NADH regeneration and enzymatic CO reduction.

Chem Commun (Camb)

College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.

Published: September 2022

An artificial photocatalyst with a Rh complex immobilized onto polymeric carbon nitride (CN) through non-covalent interaction was constructed for photocatalytic NADH regeneration. DFT calculations verified the adsorption of the bipyridine ligand onto the CN photocatalyst. By further coupling the formed NADH with FDH immobilized on a hydrophobic membrane, an enhanced HCOOH production (3.1 mM) from CO could be realized on the gas-liquid-solid three-phase interface. This work provides an alternative and efficient strategy for promoting artificial photosynthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2cc04276bDOI Listing

Publication Analysis

Top Keywords

carbon nitride
8
photocatalytic nadh
8
nadh regeneration
8
non-covalent metalation
4
metalation carbon
4
nitride photocatalytic
4
regeneration enzymatic
4
enzymatic reduction
4
reduction artificial
4
artificial photocatalyst
4

Similar Publications

In this study, graphitic carbon nitride (CN) and tungsten trioxide (WO) were successfully incorporated into bromine (Br)-doped graphitic carbon nitride (BCN) using an in-situ hydrothermal method. The photocatalytic efficiency of the resulting WO/Br-doped CN (WBCN) composites for the removal of tetracycline (TC) antibiotics under sunlight irradiation was evaluated. The mass ratio of WO to Br-doped CN (BCN) significantly influenced TC adsorption and photocatalytic degradation, with an optimal ratio of 9:1.

View Article and Find Full Text PDF

A novel fabrication of graphitic carbon nitride/chitosan composite modified with thiosemicarbazide for the effective static and dynamic adsorption of Pb from aqueous media.

Int J Biol Macromol

January 2025

Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Kingdom of Saudi Arabia. Electronic address:

In this work, graphitic carbon nitride (g-CN) prepared by thermal treatment, graphitic carbon nitride/chitosan (GCS), and graphitic carbon nitride/chitosan embedded thiosemicarbazide (TGCS) were developed as an effective solid adsorbent. The fabricated adsorbents were characterized by nitrogen adsorption, ATR-FTIR, TGA, XRD, ζ potential, SEM, and TEM, where TGCS composite had a higher surface area (536.79 m/g), total pore volume (0.

View Article and Find Full Text PDF

The efficiency of graphitic carbon nitride (g-CN) in photocatalytic reduction of carbon dioxide (CO) is inhibited by the constrained CO chemisorption, insufficient light absorption and quick charge recombination. To address these problems, we successfully synthesized g-CN/AgInS (CN/AgInS) heterostructured photocatalytic materials via an electrostatic self-assembly method. An intimate phase contact between CN and AgInS is formed, paving the way for the charge transfer and redistribution near the interface of the CN/AgInS heterostructures.

View Article and Find Full Text PDF

Layered triple hydroxide (NiCoFe-LTH) with g-CN hybrid nanocomposite as an adsorbent for Pb(II) extraction.

Food Chem

January 2025

Department of Chemistry, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye; Technology Research & Application Center (ERU-TAUM), Erciyes University, 38039 Kayseri, Türkiye; Turkish Academy of Sciences (TUBA), Çankaya, 06670, Ankara, Türkiye. Electronic address:

Hybrid graphitic carbon nitride (g-CN) with layer triple hydroxide (LTH) nanocomposite synthesized using the hydrothermal procedure has been investigated as a novel adsorbent g-CN@NiCoFe-LTH in the dispersive solid phase microextraction (DSp-ME) for Pb(II) determination in the food and water samples. The nanocomposite was characterized using FTIR, SEM, SEM-EDX, and XRD techniques. Several analytical parameters were adjusted, including pH, adsorbent quantity, adsorption and elution time, sample and eluent volume, and elution solvent concentration, and found as 8.

View Article and Find Full Text PDF

Graphitic Carbon Nitride for Photocatalytic Hydrogen Production from Water Splitting: Nano-Morphological Control and Electronic Band Tailoring.

Nanomaterials (Basel)

December 2024

State Key Laboratory of Solidifcation Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China.

Semiconductor polymeric graphitic carbon nitride (g-CN) photocatalysts have garnered significant and rapidly increasing interest in the realm of visible light-driven hydrogen evolution reactions. This interest stems from their straightforward synthesis, ease of functionalization, appealing electronic band structure, high physicochemical and thermal stability, and robust photocatalytic activity. This review starts with the basic principle of photocatalysis and the development history, synthetic strategy, and structural properties of g-CN materials, followed by the rational design and engineering of g-CN from the perspectives of nano-morphological control and electronic band tailoring.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!