Hierarchical S-modified Cu porous nanoflakes for efficient CO electroreduction to formate.

Nanoscale

State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, the Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China.

Published: September 2022

Electrochemical reduction of CO into liquid fuels is a promising approach to achieving a carbon-neutral energy cycle but remains a great challenge due to the lack of efficient catalysts. Here, the hierarchical architectures assembled by ultrathin and porous S-modified Cu nanoflakes (Cu-S NFs) are designed and constructed as an efficient electrocatalyst for CO conversion to formate with high partial current density. Specifically, when integrated into a gas diffusion electrode in a flow cell, Cu-S NFs are capable of delivering the ultrahigh formate current density up to 404.1 mA cm with a selectivity of 89.8%. Electrochemical tests and theoretical calculations indicate that the superior performance of the designed catalysts may be attributed to the unique structure, which can provide abundant active sites, fast charge transfer, and highly active edge sites.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2nr03433fDOI Listing

Publication Analysis

Top Keywords

cu-s nfs
8
current density
8
hierarchical s-modified
4
s-modified porous
4
porous nanoflakes
4
nanoflakes efficient
4
efficient electroreduction
4
electroreduction formate
4
formate electrochemical
4
electrochemical reduction
4

Similar Publications

Hierarchical S-modified Cu porous nanoflakes for efficient CO electroreduction to formate.

Nanoscale

September 2022

State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, the Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China.

Electrochemical reduction of CO into liquid fuels is a promising approach to achieving a carbon-neutral energy cycle but remains a great challenge due to the lack of efficient catalysts. Here, the hierarchical architectures assembled by ultrathin and porous S-modified Cu nanoflakes (Cu-S NFs) are designed and constructed as an efficient electrocatalyst for CO conversion to formate with high partial current density. Specifically, when integrated into a gas diffusion electrode in a flow cell, Cu-S NFs are capable of delivering the ultrahigh formate current density up to 404.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!