A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Quantitative Detection of Gastrointestinal Tumor Markers Using a Machine Learning Algorithm and Multicolor Quantum Dot Biosensor. | LitMetric

This work was to explore the application value of gastrointestinal tumor markers based on gene feature selection model of principal component analysis (PCA) algorithm and multicolor quantum dots (QDs) immunobiosensor in the detection of gastrointestinal tumors. Based on the PCA method, the neighborhood rough set algorithm was introduced to improve it, and the tumor gene feature selection model (OPCA) was established to analyze its classification accuracy and accuracy. Four kinds of coupled biosensors were fabricated based on QDs, namely, 525 nm Cd Se/Zn S QDs-carbohydrate antigen 125 (QDs525-CA125 McAb), 605 nm Cd Se/Zn S QDs-cancer antigen 19-9 (QDs605-CA19-9 McAb), 645 nm Cd Se/Zn S QDs-anticancer embryonic antigen (QDs 645-CEA McAb), and 565 nm Cd Se/Zn S QDs-anti-alpha-fetoprotein (QDs565-AFP McAb). The quantum dot-antibody conjugates were identified and quantified by fluorescence spectroscopy and ultraviolet absorption spectroscopy. The results showed that the classification precision of OPCA model in colon tumor and gastric cancer datasets was 99.52% and 99.03%, respectively, and the classification accuracy was 94.86% and 94.2%, respectively, which were significantly higher than those of other algorithms. The fluorescence values of AFP McAb, CEA McAb, CA19-9 McAb, and CA125 McAb reached the maximum when the conjugation concentrations were 25 g/mL, 20 g/mL, 30 g/mL, and 30 g/m, respectively. The highest recovery rate of AFP was 98.51%, and its fluorescence intensity was 35.78 ± 2.99, which was significantly higher than that of other antigens ( < 0.001). In summary, the OPCA model based on PCA algorithm can obtain fewer feature gene sets and improve the accuracy of sample classification. Intelligent immunobiosensors based on machine learning algorithms and QDs have potential application value in gastrointestinal gene feature selection and tumor marker detection, which provides a new idea for clinical diagnosis of gastrointestinal tumors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9458379PMC
http://dx.doi.org/10.1155/2022/9022821DOI Listing

Publication Analysis

Top Keywords

gene feature
12
feature selection
12
detection gastrointestinal
8
gastrointestinal tumor
8
tumor markers
8
machine learning
8
algorithm multicolor
8
multicolor quantum
8
application gastrointestinal
8
selection model
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!