The mixed integer linear programming (MILP) has been widely applied in many fields such as supply chain management and robot control, while how to develop a more efficient algorithm to solve large-scale MILP is still in discussion. This study addresses a hybrid algorithm of the ant colony and Benders decomposition to improve the efficiency. We firstly introduce the design of our algorithm, in which the Benders algorithm decomposes the MILP into a master problem and a slack problem, the ant colony algorithm generates initial solutions for the master problem, and heuristic rules obtain feasible solutions for the slack problem. Then, the computational experiments are carried out to verify efficiency, with a benchmark test and some medium-large scale examples. Compared with other algorithms like CPLEX, GUROBI, and traditional ACA, our algorithm shows a better performance with a 0.3%-4.0% optimality gap, as well as a significant decrease of 54.3% and 33.6% on average in the CPU time and iterations, respectively. Our contribution is to provide a low-workload, time-saving, and high-accuracy hybrid algorithm to solve MILP problems with a large amount of variables, which can be widely used in more commercial solvers and promote the utilization of the artificial intelligence.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9451994 | PMC |
http://dx.doi.org/10.1155/2022/1634995 | DOI Listing |
Sci Rep
January 2025
School of Electronics and Information, Xijing University, Xi'an, 710123, China.
To enhance high-frequency perceptual information and texture details in remote sensing images and address the challenges of super-resolution reconstruction algorithms during training, particularly the issue of missing details, this paper proposes an improved remote sensing image super-resolution reconstruction model. The generator network of the model employs multi-scale convolutional kernels to extract image features and utilizes a multi-head self-attention mechanism to dynamically fuse these features, significantly improving the ability to capture both fine details and global information in remote sensing images. Additionally, the model introduces a multi-stage Hybrid Transformer structure, which processes features at different resolutions progressively, from low resolution to high resolution, substantially enhancing reconstruction quality and detail recovery.
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Engineering, Helwan University, Cairo, Egypt.
Frequency regulation in isolated microgrids is challenging due to system uncertainties and varying load demands. This study presents an optimal µ-synthesis robust control strategy that regulates microgrid frequency while enhancing system performance and stability-a proposed fixed-structure approach for selecting performance and robustness weights, informed by subsystem frequency analysis. The controller is optimized using multi-objective particle swarm optimization (MOPSO) and multi-objective genetic algorithm (MOGA) under inequality constraints, employing a Pareto front to identify optimal solutions.
View Article and Find Full Text PDFSci Rep
January 2025
Business School, Sichuan University, 610059, Chengdu, China.
The comprehensive benefit evaluation of LID based on multi-criteria decision-making methods faces technical issues such as the uncertainties and vagueness in hybrid information sources, which can affect the overall evaluation results and ranking of alternatives. This study introduces a multi-indicator fuzzy comprehensive benefit evaluation approach for the selection of LID measures, aiming to provide a robust and holistic framework for evaluating their benefits at the community level. The proposed methodology integrates quantitative environmental and economic indicators with qualitative social benefit indicators, combining the use of the Storm Water Management Model (SWMM) and ArcGIS for scenario-based analysis, and the use of hesitant fuzzy language sets and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) for decision-making.
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Computers and Information, Minia University, Minia, Egypt.
This paper proposes a hybridized model for air quality forecasting that combines the Support Vector Regression (SVR) method with Harris Hawks Optimization (HHO) called (HHO-SVR). The proposed HHO-SVR model utilizes five datasets from the environmental protection agency's Downscaler Model (DS) to predict Particulate Matter ([Formula: see text]) levels. In order to assess the efficacy of the suggested HHO-SVR forecasting model, we employ metrics such as Mean Absolute Percentage Error (MAPE), Average, Standard Deviation (SD), Best Fit, Worst Fit, and CPU time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!