Neurotoxicity can be detected in live microscopy by morphological changes such as retraction of neurites, fragmentation, blebbing of the neuronal soma and ultimately the disappearance of fluorescently labeled neurons. However, quantification of these features is often difficult, low-throughput, and imprecise due to the overreliance on human curation. Recently, we showed that convolutional neural network (CNN) models can outperform human curators in the assessment of neuronal death from images of fluorescently labeled neurons, suggesting that there is information within the images that indicates toxicity but that is not apparent to the human eye. In particular, the CNN's decision strategy indicated that information within the nuclear region was essential for its superhuman performance. Here, we systematically tested this prediction by comparing images of fluorescent neuronal morphology from nuclear-localized fluorescent protein to those from freely diffused fluorescent protein for classifying neuronal death. We found that biomarker-optimized (BO-) CNNs could learn to classify neuronal death from fluorescent protein-localized nuclear morphology (mApple-NLS-CNN) alone, with super-human accuracy. Furthermore, leveraging methods from explainable artificial intelligence, we identified novel features within the nuclear-localized fluorescent protein signal that were indicative of neuronal death. Our findings suggest that the use of a nuclear morphology marker in live imaging combined with computational models such mApple-NLS-CNN can provide an optimal readout of neuronal death, a common result of neurotoxicity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9449453 | PMC |
http://dx.doi.org/10.3389/ftox.2022.935438 | DOI Listing |
Front Neurol
December 2024
Department of Tuina and Rehabilitation Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China.
Background: Amyotrophic lateral sclerosis (ALS) is a chronic, progressive disease that affects both upper and lower motor neurons. Some physicians have used traditional Chinese therapies (TCT) to treat ALS. However, there has been no systematic review or meta-analysis to evaluate the effectiveness and safety of TCT interventions.
View Article and Find Full Text PDFAlzheimer's disease (AD) is the most prevalent neurodegenerative dementia, marked by progressive cognitive decline and memory impairment. Despite advances in therapeutic research, single-target-directed treatments often fall short in addressing the complex, multifactorial nature of AD. This arises from various pathological features, including amyloid-β (Aβ) aggregate deposition, metal ion dysregulation, oxidative stress, impaired neurotransmission, neuroinflammation, mitochondrial dysfunction, and neuronal cell death.
View Article and Find Full Text PDFBMC Med Genomics
January 2025
Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK.
Amyotrophic lateral sclerosis (ALS) lacks a specific biomarker, but is defined by relatively selective toxicity to motor neurons (MN). As others have highlighted, this offers an opportunity to develop a sensitive and specific biomarker based on detection of DNA released from dying MN within accessible biofluids. Here we have performed whole genome bisulfite sequencing (WGBS) of iPSC-derived MN from neurologically normal individuals.
View Article and Find Full Text PDFCell Death Dis
January 2025
State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
Sterile alpha and Toll/interleukin-1 receptor motif containing 1 (SARM1), a nicotinamide adenine dinucleotide (NAD)-utilizing enzyme, mediates axon degeneration (AxD) in various neurodegenerative diseases. It is activated by nicotinamide mononucleotide (NMN) to produce a calcium messenger, cyclic ADP-ribose (cADPR). This activity is blocked by elevated NAD level.
View Article and Find Full Text PDFCell Death Dis
January 2025
NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China.
Neuroinflammation is a key factor in the pathogenesis of Parkinson's disease (PD). Activated microglia in the central nervous system (CNS) and infiltration of peripheral immune cells contribute to dopaminergic neuron loss. However, the role of peripheral immune responses, particularly triggering receptor expressed on myeloid cells-1 (TREM-1), in PD remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!