forming oxygen/ROS-responsive niche-like hydrogel enabling gelation-triggered chemotherapy and inhibition of metastasis.

Bioact Mater

State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China.

Published: March 2023

Though the development of the diverse hypoxia-activated prodrugs (HAPs) has made great progresses in the last several decades, current cancer therapy based on HAPs still suffers many obstacles, e.g., poor therapeutic outcome owing to hard deep reaching to hypoxic region, and the occurrence of metastasis due to hypoxia. Inspired by engineered niches, a novel functional chitosan polymer (CS-FTP) is synthesized for construction of a hydrogel-based bio-niche (CS-FTP-gel) in aiming at remodeling tumor hypoxic microenvironment. The CS-FTP polymers are crosslinked to form a niche-like hydrogel via enzyme-mediated oxygen-consumable dimerization after injected into tumor, in which a HAP (i.e., AQ4N) could be physically encapsulated, resulting in enhanced tumor hypoxia to facilitate AQ4N-AQ4 toxic transformation for maximizing efficacy of chemotherapy. Furthermore, Pazopanib (PAZ) conjugated onto the CS backbone via ROS-sensitive linker undergoes a stimuli-responsive release behavior to promote antiangiogenesis for tumor starvation, eventually contributing to the inhibition of lung metastasis and synergistic action with AQ4N-based chemotherapy for an orthotopic 4T1 breast tumor model. This study provides a promising strategy for hypoxia-based chemotherapy and demonstrates an encouraging clinical potential for multifunctional hydrogel applicable for antitumor treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9417960PMC
http://dx.doi.org/10.1016/j.bioactmat.2022.08.002DOI Listing

Publication Analysis

Top Keywords

niche-like hydrogel
8
tumor
5
forming oxygen/ros-responsive
4
oxygen/ros-responsive niche-like
4
hydrogel enabling
4
enabling gelation-triggered
4
chemotherapy
4
gelation-triggered chemotherapy
4
chemotherapy inhibition
4
inhibition metastasis
4

Similar Publications

The bone marrow (BM) niches are the complex microenvironments that surround cells, providing various external stimuli to regulate a range of haematopoietic stem cell (HSC) behaviours. Recently, it has been proposed that the fate decision of HSCs is often correlated with significantly altered biophysical signals of BM niches. To thoroughly elucidate the effect of mechanical microenvironments on cell fates, we constructed 2D and 3D cell culture hydrogels using polyacrylamide to replicate the mechanical properties of heterogeneous sub-niches, including the inherent rigidity of marrow adipose tissue (2 kPa), perivascular tissue (8 kPa) and endosteum region (35 kPa) in BM.

View Article and Find Full Text PDF

Background: Acute myeloid leukemia (AML) is a hematological malignancy that remains a therapeutic challenge due to the high incidence of disease relapse. To better understand resistance mechanisms and identify novel therapies, robust preclinical models mimicking the bone marrow (BM) microenvironment are needed. This study aimed to achieve an automated fabrication process of a three-dimensional (3D) AML disease model that recapitulates the 3D spatial structure of the BM microenvironment and applies to drug screening and investigational studies.

View Article and Find Full Text PDF

forming oxygen/ROS-responsive niche-like hydrogel enabling gelation-triggered chemotherapy and inhibition of metastasis.

Bioact Mater

March 2023

State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China.

Though the development of the diverse hypoxia-activated prodrugs (HAPs) has made great progresses in the last several decades, current cancer therapy based on HAPs still suffers many obstacles, e.g., poor therapeutic outcome owing to hard deep reaching to hypoxic region, and the occurrence of metastasis due to hypoxia.

View Article and Find Full Text PDF

An injectable double-network hydrogel for the co-culture of vascular endothelial cells and bone marrow mesenchymal stem cells for simultaneously enhancing vascularization and osteogenesis.

J Mater Chem B

December 2018

Department of Cariology and Endodontology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China.

The achievement of rapid vascularization in large implanted constructs is a major challenge in the field of bone tissue engineering. Although co-culture of bone-forming cells and vascular endothelial cells (VECs) has been expected to be a way of promoting vascularization during bone formation with a scaffold, there is a lack of detailed knowledge about the direct interactions between two types of stem cells in a three-dimensional (3D) extracellular matrix (ECM). Herein, we report on the use of an injectable cytocompatible double-network (DN) hydrogel to encapsulate, co-culture and subsequently stimulate the angiogenic/osteogenic differentiation of VECs and the human bone marrow mesenchymal stem cells (BM-MSCs), which demonstrates that the direct co-cultured system enables simultaneous enhancement of vascularization and osteogenesis by providing 3D cell-cell communication.

View Article and Find Full Text PDF

3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair.

Biomaterials

January 2017

Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Kyungbuk, 37673, South Korea. Electronic address:

Stem cell therapy is a promising therapeutic method for the treatment of ischemic heart diseases; however, some challenges prohibit the efficacy after cell delivery due to hostile microenvironment of the injured myocardium. 3D printed pre-vascularized stem cell patch can enhance the therapeutic efficacy for cardiac repair through promotion of rapid vascularization after patch transplantation. In this study, stem cell-laden decellularized extracellular matrix bioinks are used in 3D printing of pre-vascularized and functional multi-material structures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!