A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Prediction of anti-inflammatory peptides by a sequence-based stacking ensemble model named AIPStack. | LitMetric

Prediction of anti-inflammatory peptides by a sequence-based stacking ensemble model named AIPStack.

iScience

Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.

Published: September 2022

Accurate and efficient identification of anti-inflammatory peptides (AIPs) is crucial for the treatment of inflammation. Here, we proposed a two-layer stacking ensemble model, AIPStack, to effectively predict AIPs. At first, we constructed a new dataset for model building and validation. Then, peptide sequences were represented by hybrid features, which were fused by two amino acid composition descriptors. Next, the stacking ensemble model was constructed by random forest and extremely randomized tree as the base-classifiers and logistic regression as the meta-classifier to receive the outputs from the base-classifiers. AIPStack achieved an AUC of 0.819, accuracy of 0.755, and MCC of 0.510 on the independent set 3, which were higher than other AIP predictors. Furthermore, the essential sequence features were highlighted by the Shapley Additive exPlanation (SHAP) method. It is anticipated that AIPStack could be used for AIP prediction in a high-throughput manner and facilitate the hypothesis-driven experimental design.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9449674PMC
http://dx.doi.org/10.1016/j.isci.2022.104967DOI Listing

Publication Analysis

Top Keywords

stacking ensemble
12
ensemble model
12
anti-inflammatory peptides
8
prediction anti-inflammatory
4
peptides sequence-based
4
sequence-based stacking
4
model
4
model named
4
aipstack
4
named aipstack
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!