Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The pursuit of ever-higher solar cell efficiencies has focused heavily on multijunction technologies. In tandem cells, subcells are typically either contacted via two terminals (2T) or four terminals (4T). Simulations show that the less-common three-terminal (3T) design may be comparable to 4T tandem cells in its compatibility with a range of materials, operating conditions, and methods for subcell integration, yet the 3T design circumvents shading losses of the 4T intermediate conductive layers. This study analyzes the performance of two superstrate 3T III-V-on-Si (III-V//Si) tandem cells: One has slightly greater current contribution from the Si bottom cell (GaInP//Si) and the other has substantially greater current contribution from the GaAs top cell (GaAs//Si). Our results show that both tandem cells exhibit the same efficiency (21.3%), thereby demonstrating that the third terminal allows for flexibility in the selection of the top cell material, similar to the 4T design.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9450120 | PMC |
http://dx.doi.org/10.1016/j.isci.2022.104950 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!