Aims/hypothesis: SGLT2 inhibition is associated with a reduced risk of cardiac disease that is still largely unexplained. According to one hypothesis, improved myocardial energetics may explain the cardioprotective effects of SGLT2i. However, recent mechanistic studies that have addressed this question have lacked the power to detect discrete but still clinically significant effects.
Methods: We pooled data from two recent randomized clinical trials and performed a meta-analysis to determine the effect of SGLT2 inhibition on myocardial oxygen consumption and myocardial external efficiency measured by positron emission tomography.
Results: SGLT2 inhibition reduced myocardial oxygen consumption (-1.06 [95%CI: 0.22-1.89] mL/100 g/min (n = 59, p = 0.01)), but did not affect myocardial external efficiency (2.22 [95%CI: 0.66-5.11] % (n = 59, p = 0.13)).
Conclusions: /interpretation: SGLT2 inhibition reduces myocardial oxygen consumption at rest, which may contribute to the drugs' cardioprotective effects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9460164 | PMC |
http://dx.doi.org/10.1016/j.metop.2022.100207 | DOI Listing |
Clin Kidney J
January 2025
Department of General Internal Medicine and Nephrology, Robert Bosch Hospital Stuttgart, Stuttgart, Germany.
Background: Sparsentan, a dual-acting antagonist for both the angiotensin II receptor type 1 and the endothelin receptor type A, has emerged as a promising therapeutic agent for the treatment of IgA nephropathy (IgAN). Following the publication of the PROTECT trial, sparsentan recently received approval for the treatment of IgAN in Europe. However, it remains uncertain whether an additive effect can be observed in the context of existing treatment with sodium-glucose co-transporter 2 (SGLT2) inhibitors, given that the PROTECT study did not investigate this dual therapy approach.
View Article and Find Full Text PDFDrug Des Devel Ther
January 2025
Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, People's Republic of China.
Sodium glucose co-transporter 2 (SGLT2) inhibitors represent a novel class of hypoglycemic drugs that have emerged in recent years. These inhibitors function primarily by blocking the reabsorption of glucose in the kidneys, specifically targeting the SGLT2 proteins in the proximal convoluted tubules. This inhibition results in the reduction of blood glucose levels through increased glucose excretion in the urine.
View Article and Find Full Text PDFWorld J Cardiol
January 2025
Chinese Academy Medical Sciences, Fuwai Yunnan Hospital, Kunming 650000, Yunnan Province, China.
Sodium-glucose cotransporter-2 (SGLT-2) inhibitors represent a cutting-edge class of oral antidiabetic therapeutics that operate through selective inhibition of glucose reabsorption in proximal renal tubules, consequently augmenting urinary glucose excretion and attenuating blood glucose levels. Extensive clinical investigations have demonstrated their profound cardiovascular efficacy. Parallel basic science research has elucidated the mechanistic pathways through which diverse SGLT-2 inhibitors beneficially modulate pulmonary vascular cells and arterial remodeling.
View Article and Find Full Text PDFJ Clin Lipidol
December 2024
Department of Clinical Biochemistry, Copenhagen University Hospital - Rigshospitalet, Centre of Diagnostic Investigation, Copenhagen, Denmark; Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Denmark. Electronic address:
Objective: Beyond glucose-lowering, sodium-glucose co-transporter 2 (SGLT2) inhibitors have cardioprotective effects with unclear mechanisms. We examined changes in an extensive panel of plasma lipids, lipoproteins, and apolipoproteins and whether these changes were independent of weight loss, hemoglobin A1c, and hematocrit in patients treated with empagliflozin versus placebo to better understand the observed cardioprotective effects.
Methods: Post-hoc analyses of two double-blind, placebo-controlled trials, the Empire HF trial including 190 patients with heart failure and reduced ejection fraction and the SIMPLE trial including 90 patients with type 2 diabetes randomized to, respectively, 10 mg and 25 mg empagliflozin daily or placebo for 12 weeks.
J Alzheimers Dis
January 2025
Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
Background: Sodium-glucose cotransporter 2 (SGLT2) inhibitors is a novel category of medications for diabetes, exhibiting neuroprotective potential. However, evidence regarding whether the use of SGLT2 inhibitors effectively reduces the risk of Alzheimer's disease (AD) remains unclear.
Objective: Our study employed Mendelian randomization (MR) analysis to investigate potential causal relationships between SGLT2 inhibition, metabolites, and AD.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!