Major and Rare Earth Element Characteristics of Late Paleozoic Coal in the Southeastern Qinshui Basin: Implications for Depositional Environments and Provenance.

ACS Omega

Key Laboratory for Marine Reservoir Evolution and Hydrocarbon Abundance Mechanism, School of Energy Resources, China University of Geosciences (Beijing), Ministry of Education, Xueyuan Road No. 29, Beijing 100083, China.

Published: September 2022

To understand the geochemical characteristics of late Paleozoic coal in the Changzhi and Jincheng mining areas in the southeastern Qinshui Basin, major and rare earth element analyses were conducted through inductively coupled plasma-mass spectrometry (ICP-MS), X-ray fluorescence spectrometry (XRF), and proximate analysis. The results show that the study coals are bituminous A rank and anthracite C rank ( : 1.6-3.24%) with low-ash, low-moisture, low-volatile, and low- to medium-sulfur characteristics. The main forms of sulfur in the study coals are organic sulfur, followed by pyritic sulfur, only some coals with high sulfur contents in the Taiyuan Formation (SGJ, WTP, FHS) are mainly pyritic sulfur, and the contents of sulfate sulfur are extremely low. The major elements of the late Paleozoic coal in the southeastern Qinshui Basin are mainly SiO (4.77%) and AlO (3.64%), followed by FeO (1.22%), CaO (1.53%), FeO (0.48%), MgO (0.25%), NaO (0.21%), PO (0.18%), TiO (0.15%), and minor KO (0.04%) (on a whole-coal basis). Through correlation analysis and cluster analysis, the occurrence states of major elements in the Shanxi and Taiyuan Formations are different. The average rare earth elements and yttrium (REY) value in the study area is 88.68 μg/g (on a whole-coal basis). The mean light REY (LREY)-to-heavy REY (HREY) ratio is 26.33. The mean values of δEu, δCe, Y, and Gd are 0.60, 0.99, 1.07, and 1.02, respectively. The Shanxi Formation is dominated by the L-type REY enrichment, while the Taiyuan Formation is dominated by the M-H-type REY enrichment. The fractionation degree of REY in the Taiyuan Formation is lower than that in the Shanxi Formation. Rare earth elements in Shanxi coal mainly occur in clay minerals, and some rare earth elements are adsorbed and enriched by vitrinite. Rare earth elements in Taiyuan coal mainly occur in clay minerals and pyrite, and some rare earth elements occur in inertinite. A warm, humid, low-salinity, oxidizing, and acidic environment was favorable for REY enrichment. The coal-forming environment was weakly oxidizing and reducing, and the paleosalinity of the water was relatively high during late Paleozoic coal deposition in the southeastern Qinshui Basin. The paleotemperature of the Shanxi Formation is higher than that of the Taiyuan Formation. The provenance is mainly from an upper crustal felsic source region, the source rocks are mainly post-Archean sedimentary and calcareous mudstones mixed with some granite and alkaline basalt from the Yinshan Upland, and the tectonic setting of the source area mainly includes island arcs and active continental margins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9453815PMC
http://dx.doi.org/10.1021/acsomega.2c02596DOI Listing

Publication Analysis

Top Keywords

rare earth
28
earth elements
20
late paleozoic
16
paleozoic coal
16
southeastern qinshui
16
qinshui basin
16
taiyuan formation
16
shanxi formation
12
rey enrichment
12
major rare
8

Similar Publications

Continental drift triggered the Early Permian aridification of North China.

Nat Commun

January 2025

State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu, China.

The boundary between wet and arid climate zones in the Tethys Ocean remains challenging to trace, complicating our understanding of global aridification pattern during the Late Carboniferous to Early Permian transition. The North China Block (NCB), situated in the Tethys Ocean, underwent a transition from humid to arid climate during the Early Permian, providing a rare opportunity to trace this climate boundary across this region. Here, we present paleomagnetic evidence indicating that the NCB underwent rapid northward drift between 290 and 281 million years ago.

View Article and Find Full Text PDF

Transition from multi-year La Niña to strong El Niño rare but increased under global warming.

Sci Bull (Beijing)

December 2024

NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington DC 20005, USA.

El Niño-Southern Oscillation (ENSO) exhibits a strong asymmetry between warm El Niño and cold La Niña in amplitude and temporal evolution. An El Niño often leads to a heat discharge in the equatorial Pacific conducive to its rapid termination and transition to a La Niña, whereas a La Niña persists and recharges the equatorial Pacific for consecutive years preconditioning development of a subsequent El Niño, as occurred in 2020-2023. Whether the multiyear-long heat recharge increases the likelihood of a transition to a strong El Niño remains unknown.

View Article and Find Full Text PDF

Resonant pumping of the electronic f-f transitions in the orbital multiplet of dysprosium ions (Dy^{3+}) in a complex perovskite DyFeO_{3} is shown to impulsively launch THz lattice dynamics corresponding to the B_{2g} phonon mode, which is dominanted by the motion of Dy^{3+} ions. The findings, supported by symmetry analysis and density-functional theory calculations, not only provide a novel route for highly selective excitation of the rare-earth crystal lattices but also establish important relationships between the symmetry of the electronic and lattice excitations in complex oxides.

View Article and Find Full Text PDF

Structural and magnetic phase transitions in EuLaFe(BO) (x = 0, 0.18).

Acta Crystallogr B Struct Sci Cryst Eng Mater

February 2025

Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk 660036, Russian Federation.

The crystal structures and hyperfine magnetic parameters of EuFe(BO) and mixed EuLaFe(BO) were studied over a wide temperature range in order to analyze correlations of the structural and magnetic features and the phase transitions in multiferroic compounds of the rare-earth iron borate family. The chemical compositions of the crystals are reported from X-ray fluorescence analysis. The crystal structures of EuFe(BO) and EuLaFe(BO) were determined using single-crystal X-ray diffraction in the temperature range 25-500 K.

View Article and Find Full Text PDF

Background: Yttrium-90 FF-21101 (Y-FF-21101) is a radiopharmaceutical that targets P-cadherin as a therapy against solid tumors. A previously reported, first-in-human study determined that a dose of 25 mCi/m was safe, and a patient with clear cell carcinoma of the ovary achieved a complete response. In this article, the authors report the results of Y-FF-21101 treatment in an ovarian carcinoma expansion cohort and in patients with selected solid tumors who had known high P-cadherin expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!