Multiple sclerosis (MS) is a disease of the central nervous system (CNS) that is the result of the body's own immune cells being auto-reactive to the myelin regions of the body as if these regions were foreign antigens. This demyelination process is damaging to the electrical conductivity of neurons. The current medicines are only capable of fighting off the symptoms of the disease, but not the disease itself. Specialized stem cells, known as mesenchymal stem cells (MSCs), seem to be the candidate therapy to get rid of MS. MSCs can be isolated from multiple sources of the person's body, and even from the umbilical cord (UC) and placenta of a donor. These cells have anti-inflammatory effects so they can target the overactivity and self-antigen attacks by T cells and macrophages; this immune system overactivity is characteristic of MS. MSCs show the ability to locate into brain lesions when injected and thus can compensate for the loss of the brain function by differentiating into neuronal precursor cells and glial cells. The author has listed tables of clinical trials that have utilized MSCs from different sources, along with the years and the phase of study completed for each trial. The consensus is that these cells work on inhibiting CD4 and CD8 T cell activation, T regulatory cells (Tregs), and macrophage switch into the auto-immune phenotype. The best source of MSCs seems to be the UC due to the easiness of extraction, the noninvasive method of collection, their higher expansion ability and more powerful immune-modulating properties compared to other locations in the body. Studies showed there was a significant decline of mRNA expression of several cytokines after the administration of MSCs derived from the UC (UCMSCs). Other researchers were able to repair the defects of Tregs in MS patients by co-culturing Tregs from these patients with UCMSCs, which decreased the production of the pro-inflammatory cytokine IFN , and also suggested a strong link between Tregs lack of functionality in MS patients with the pathogenesis of the disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9420954 | PMC |
http://dx.doi.org/10.1016/j.reth.2022.07.003 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Tai'an 271018, China.
In many plants, the asymmetric division of the zygote sets up the apical-basal body axis. In the cress , the zygote coexpresses regulators of the apical and basal embryo lineages, the transcription factors WOX2 and WRKY2/WOX8, respectively. WRKY2/WOX8 activity promotes nuclear migration, cellular polarity, and mitotic asymmetry of the zygote, which are hallmarks of axis formation in many plant species.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Institute of Science and Technology Austria, AT-3400 Klosterneuburg, Austria.
Biophysical constraints limit the specificity with which transcription factors (TFs) can target regulatory DNA. While individual nontarget binding events may be low affinity, the sheer number of such interactions could present a challenge for gene regulation by degrading its precision or possibly leading to an erroneous induction state. Chromatin can prevent nontarget binding by rendering DNA physically inaccessible to TFs, at the cost of energy-consuming remodeling orchestrated by pioneer factors (PFs).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720.
Norepinephrine in vertebrates and its invertebrate analog, octopamine, regulate the activity of neural circuits. We find that, when hungry, larvae switch activity in type II octopaminergic motor neurons (MNs) to high-frequency bursts, which coincide with locomotion-driving bursts in type I glutamatergic MNs that converge on the same muscles. Optical quantal analysis across hundreds of synapses simultaneously reveals that octopamine potentiates glutamate release by tonic type Ib MNs, but not phasic type Is MNs, and occurs via the G-coupled octopamine receptor (OAMB).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616.
Seeds are complex structures composed of three regions, embryo, endosperm, and seed coat, with each further divided into subregions that consist of tissues, cell layers, and cell types. Although the seed is well characterized anatomically, much less is known about the genetic circuitry that dictates its spatial complexity. To address this issue, we profiled mRNAs from anatomically distinct seed subregions at several developmental stages.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China.
Rotation of the bacterial flagellum, the first identified biological rotary machine, is driven by its stator units. Knowledge gained about the function of stator units has increasingly led to studies of rotary complexes in different cellular pathways. Here, we report that a tetrameric PilZ family protein, FlgX, is a structural component underneath the stator units in the flagellar motor of .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!