Estimating the phenological dynamics of irrigated rice leaf area index using the combination of PROSAIL and Gaussian Process Regression.

Int J Appl Earth Obs Geoinf

Department of Geography, School of Environment, Education and Development (SEED), University of Manchester, Manchester, United Kingdom.

Published: October 2021

The growth of rice is a sequence of three different phenological phases. This sequence of change in rice phenology implies that the condition of the plant during the vegetative phase relates directly to the health of leaves functioning during the reproductive and ripening phases. As such, accurate monitoring is important towards understanding rice growth dynamics. Leaf Area Index (LAI) is an important indicator of rice yields and the availability of this information during key phenological phases can support more informed farming decisions. Satellite remote sensing has been adopted as a proxy to field measurements of LAI and with the launch of freely available high resolution Satellite images such as Sentinel-2, it is imperative that accurate retrieval methods are adopted towards monitoring LAI at irrigated rice fields. Here, we evaluate the potential of a hybrid radiative transfer model (i.e., PROSAIL - Gaussian Process Regression (GPR), for estimating the phenological dynamics of irrigated rice LAI using imager derived from the Sentinel-2 multispectral instrument. LAI field measurements were obtained from an experimental rice field in Nasarawa state, Nigeria during the dry season. We used the PROSAIL radiative transfer model to create a look up table (LUT) that was subsequently used to train a GPR model. Afterwards, we evaluated the potential of the hybrid modelling approach by assessing the overall model accuracy and the extent to which LAI was able to accurately predict LAI during key rice phenological phases. We compared the predicted hybrid GPR LAI values with LAI values generated from the SNAP toolbox, based on a hybrid Artificial Neural Network (ANN) modelling approach. Our results show that the overall predictive accuracy of the hybrid GPR model (R2 = 0.82, RMSE = 1.65) was more accurate than that of the hybrid ANN model (R2 = 0.66, RMSE = 3.89) for retrieving LAI values from Sentinel-2 imagery. Both models underestimated LAI values during the reproductive and ripening phases . However, the accuracy during the phenological phases were more significant when using the hybrid GPR model (P < 0.05). During the different phenological phases, the hybrid GPR model predicted LAI more accurately during the reproductive (R = 0.7) and ripening (R = 0.59) phases compared to the hybrid ANN reproductive and ripening phases. When monitoring LAI phenological profiles of both hybrid models, the hybrid GPR and ANN models underestimated LAI during the reproductive and ripening phases. However, the ANN model underestimations were statistically significantly greater than those for the hybrid GPR model (P < 0.05). Our results highlight the potential of hybrid GPR models for estimating the phenological dynamics of irrigated rice LAI from Sentinel-2 data. They provided more accurate estimation of LAI patterns from varying nitrogen and water applications than hybrid ANN models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7613347PMC
http://dx.doi.org/10.1016/j.jag.2021.102454DOI Listing

Publication Analysis

Top Keywords

hybrid gpr
28
phenological phases
20
reproductive ripening
20
gpr model
20
irrigated rice
16
ripening phases
16
lai
16
lai values
16
hybrid
14
estimating phenological
12

Similar Publications

This study presents an innovative approach for predicting water and groundwater quality indices (WQI and GWQI) in the Eastern Province of Saudi Arabia, addressing critical challenges of scarcity and pollution in arid regions. Recent literature highlights the increasing attention towards WQI based on water pollution index (WPI) and GWQI as essential tools for simplifying complex hydrogeological data, thereby facilitating effective groundwater management and protection. Unlike previous works, the present research introduces a novel hybrid method that integrates non-parametric kernel Gaussian learning (GPR), adaptive neuro-fuzzy inference system (ANFIS), and decision tree (DT) algorithms.

View Article and Find Full Text PDF

Background: The purpose was to analyse the interrelations between planning and complexity metrics and gamma passing rates (GPRs) obtained from VMAT treatments and build the forecasting models for qualitative prediction (QD) of GPRs results.

Materials And Method: 802 treatment arcs from the plans prepared for the head and neck, thorax, abdomen, and pelvic cancers were analysed. The plans were verified by portal dosimetry and analysed twice using the gamma method with 3%|2mm and 2%|2mm acceptance criteria.

View Article and Find Full Text PDF

The pharmaceutical industry is increasingly drawn to the research of innovative drug delivery systems through the use of supercritical CO (scCO)-based techniques. Measuring the solubility of drugs in scCO at varying conditions is a crucial parameter in this context. In this research, the supercritical solubility of two pharmaceutical ingredients, namely Febuxostat and Chlorpromazine, has been assessed theoretically using various thermodynamic approaches, including PR, SRK, UNIQUAC, and Wilson models.

View Article and Find Full Text PDF

Estimation of soil organic carbon in LUCAS soil database using Vis-NIR spectroscopy based on hybrid kernel Gaussian process regression.

Spectrochim Acta A Mol Biomol Spectrosc

November 2024

School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China; Communications Information Transmission and Convergence Technology Laboratory, Hangzhou 310018, China. Electronic address:

Soil Organic Carbon (SOC) is crucial for determining soil fertility and environmental quality. The problem with traditional SOC chemical analysis methods is that they are time-consuming and resource-intensive. In recent years, visible-near infrared (Vis-NIR) spectroscopy has been employed as an alternative method for SOC determination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!