The growth of rice is a sequence of three different phenological phases. This sequence of change in rice phenology implies that the condition of the plant during the vegetative phase relates directly to the health of leaves functioning during the reproductive and ripening phases. As such, accurate monitoring is important towards understanding rice growth dynamics. Leaf Area Index (LAI) is an important indicator of rice yields and the availability of this information during key phenological phases can support more informed farming decisions. Satellite remote sensing has been adopted as a proxy to field measurements of LAI and with the launch of freely available high resolution Satellite images such as Sentinel-2, it is imperative that accurate retrieval methods are adopted towards monitoring LAI at irrigated rice fields. Here, we evaluate the potential of a hybrid radiative transfer model (i.e., PROSAIL - Gaussian Process Regression (GPR), for estimating the phenological dynamics of irrigated rice LAI using imager derived from the Sentinel-2 multispectral instrument. LAI field measurements were obtained from an experimental rice field in Nasarawa state, Nigeria during the dry season. We used the PROSAIL radiative transfer model to create a look up table (LUT) that was subsequently used to train a GPR model. Afterwards, we evaluated the potential of the hybrid modelling approach by assessing the overall model accuracy and the extent to which LAI was able to accurately predict LAI during key rice phenological phases. We compared the predicted hybrid GPR LAI values with LAI values generated from the SNAP toolbox, based on a hybrid Artificial Neural Network (ANN) modelling approach. Our results show that the overall predictive accuracy of the hybrid GPR model (R2 = 0.82, RMSE = 1.65) was more accurate than that of the hybrid ANN model (R2 = 0.66, RMSE = 3.89) for retrieving LAI values from Sentinel-2 imagery. Both models underestimated LAI values during the reproductive and ripening phases . However, the accuracy during the phenological phases were more significant when using the hybrid GPR model (P < 0.05). During the different phenological phases, the hybrid GPR model predicted LAI more accurately during the reproductive (R = 0.7) and ripening (R = 0.59) phases compared to the hybrid ANN reproductive and ripening phases. When monitoring LAI phenological profiles of both hybrid models, the hybrid GPR and ANN models underestimated LAI during the reproductive and ripening phases. However, the ANN model underestimations were statistically significantly greater than those for the hybrid GPR model (P < 0.05). Our results highlight the potential of hybrid GPR models for estimating the phenological dynamics of irrigated rice LAI from Sentinel-2 data. They provided more accurate estimation of LAI patterns from varying nitrogen and water applications than hybrid ANN models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7613347 | PMC |
http://dx.doi.org/10.1016/j.jag.2021.102454 | DOI Listing |
Sci Rep
August 2024
Department of Civil Engineering, College of Engineering, University of Diyala, Baqubah, Diyala Governorate, Iraq.
This study presents an innovative approach for predicting water and groundwater quality indices (WQI and GWQI) in the Eastern Province of Saudi Arabia, addressing critical challenges of scarcity and pollution in arid regions. Recent literature highlights the increasing attention towards WQI based on water pollution index (WPI) and GWQI as essential tools for simplifying complex hydrogeological data, thereby facilitating effective groundwater management and protection. Unlike previous works, the present research introduces a novel hybrid method that integrates non-parametric kernel Gaussian learning (GPR), adaptive neuro-fuzzy inference system (ANFIS), and decision tree (DT) algorithms.
View Article and Find Full Text PDFRep Pract Oncol Radiother
July 2024
Department of Medical Physics, Greater Poland Cancer Centre, Poznan, Poland.
Background: The purpose was to analyse the interrelations between planning and complexity metrics and gamma passing rates (GPRs) obtained from VMAT treatments and build the forecasting models for qualitative prediction (QD) of GPRs results.
Materials And Method: 802 treatment arcs from the plans prepared for the head and neck, thorax, abdomen, and pelvic cancers were analysed. The plans were verified by portal dosimetry and analysed twice using the gamma method with 3%|2mm and 2%|2mm acceptance criteria.
Int J Pharm
October 2024
Sports Medicine Department, Shandong University Qilu Hospital (Qingdao), Shandong, 266035, China. Electronic address:
The pharmaceutical industry is increasingly drawn to the research of innovative drug delivery systems through the use of supercritical CO (scCO)-based techniques. Measuring the solubility of drugs in scCO at varying conditions is a crucial parameter in this context. In this research, the supercritical solubility of two pharmaceutical ingredients, namely Febuxostat and Chlorpromazine, has been assessed theoretically using various thermodynamic approaches, including PR, SRK, UNIQUAC, and Wilson models.
View Article and Find Full Text PDFRSC Adv
June 2024
Research and Development Manager, Teb Plastic Company Tehran Iran.
[This retracts the article DOI: 10.1039/D3RA05360A.].
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
November 2024
School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China; Communications Information Transmission and Convergence Technology Laboratory, Hangzhou 310018, China. Electronic address:
Soil Organic Carbon (SOC) is crucial for determining soil fertility and environmental quality. The problem with traditional SOC chemical analysis methods is that they are time-consuming and resource-intensive. In recent years, visible-near infrared (Vis-NIR) spectroscopy has been employed as an alternative method for SOC determination.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!