A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Reactive Extrusion Synthesis of Biobased Isocyanate-Free Hydrophobically Modified Ethoxylated Urethanes with Pendant Hydrophobic Groups. | LitMetric

AI Article Synopsis

  • The development of hydrophobically modified ethoxylated urethane (HEUR) rheology modifiers has shifted waterborne paints and coatings away from harmful solvent-based alternatives, but conventional HEUR synthesis uses toxic diisocyanates, harming eco-sustainability.
  • This research introduces an innovative method to create isocyanate-free hydrophobically modified ethoxylated poly(hydroxy-urethane)s (IFHEURs), using CO-based cyclic carbonate and biobased hydrophobic diamine in a reactive extrusion process.
  • The resulting IFHEURs exhibit flexible structures and tunable thickening performance in aqueous solutions, confirmed through various analytical techniques, paving the way for safer and more sustainable rheology modifiers

Article Abstract

Development of hydrophobically modified ethoxylated urethane (HEUR) rheology modifiers enabled the widespread application of waterborne paints and coatings, replacing their environmentally burdening solvent-based predecessors. However, the diisocyanates, required for the conventional synthesis of HEURs, pose severe eco-sustainability threats. In this paper, we demonstrate an innovative approach to avoiding toxic components in the preparation of rheology modifiers by obtaining a new class of water-soluble isocyanate-free hydrophobically modified ethoxylated poly(hydroxy-urethane)s (IFHEURs). The first step in the synthetic pathway was the preparation of CO-based five-membered poly(ethylene glycol) bis(cyclic carbonate) and its subsequent aminolysis using 4,7,10-trioxa-1,13-tridecanediamine, yielding poly(hydroxy-urethane) (PHU) prepolymers terminated with cyclic carbonate groups. The PHU prepolymers were further extended in a reactive extrusion (REX) synthesis using biobased hydrophobic diamine PRIAMINE 1075. The REX technique made it possible to overcome the typical limitations of the aminolysis reaction and to reach the desired conversion within a moderate reaction time. IFHEURs have been structurally elucidated using FT-IR and NMR spectroscopy techniques, MALDI-ToF mass spectrometry, and SEC analysis and applied as rheology modifiers. The study of their associative behavior in aqueous solutions confirmed that the architectural flexibility of the obtained IFHEURs, containing terminal and pendant hydrophobic groups, opens a perspective for tuneable thickening performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9450225PMC
http://dx.doi.org/10.1021/acssuschemeng.2c03535DOI Listing

Publication Analysis

Top Keywords

hydrophobically modified
12
modified ethoxylated
12
rheology modifiers
12
reactive extrusion
8
synthesis biobased
8
isocyanate-free hydrophobically
8
pendant hydrophobic
8
hydrophobic groups
8
phu prepolymers
8
extrusion synthesis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!