Development of Ultra-High Dose-Rate (FLASH) Particle Therapy.

IEEE Trans Radiat Plasma Med Sci

Department of Oncology, The Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom.

Published: March 2022

Research efforts in FLASH radiotherapy have increased at an accelerated pace recently. FLASH radiotherapy involves ultra-high dose rates and has shown to reduce toxicity to normal tissue while maintaining tumor response in pre-clinical studies when compared to conventional dose rate radiotherapy. The goal of this review is to summarize the studies performed to-date with proton, electron, and heavy ion FLASH radiotherapy, with particular emphasis on the physical aspects of each study and the advantages and disadvantages of each modality. Beam delivery parameters, experimental set-up, and the dosimetry tools used are described for each FLASH modality. In addition, modeling efforts and treatment planning for FLASH radiotherapy is discussed along with potential drawbacks when translated into the clinical setting. The final section concludes with further questions that have yet to be answered before safe clinical implementation of FLASH radiotherapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9457346PMC
http://dx.doi.org/10.1109/trpms.2021.3091406DOI Listing

Publication Analysis

Top Keywords

flash radiotherapy
20
flash
7
radiotherapy
6
development ultra-high
4
ultra-high dose-rate
4
dose-rate flash
4
flash particle
4
particle therapy
4
therapy efforts
4
efforts flash
4

Similar Publications

To study the effect of dose-rate in the time evolution of chemical yields produced in pure water versus a cellular-like environment for FLASH radiotherapy research. A version of TOPAS-nBio with Tau-Leaping algorithm was used to simulate the homogenous chemistry stage of water radiolysis using three chemical models: 1) liquid water model that considered scavenging of eaq-, H● by dissolved oxygen; 2) Michaels & Hunt model that considered scavenging of ●OH, eaq-, and H● by biomolecules existing in cellular environment; 3) Wardman model that considered model 2) and the chemical repair enzyme glutathione (GHS). H2O2 concentrations at conventional and FLASH dose-rates were compared with published measurements.

View Article and Find Full Text PDF

FLASH radiotherapy employs ultra-high dose rates of >40 Gy/s, which may reduce normal tissue complication as compared to conventional dose rate treatments, while still ensuring the same level of tumour control. The potential benefit this can offer to patients has been the cause of great interest within the radiation oncology community, but this has not translated to a direct understanding of the FLASH effect. The oxygen depletion and inter-track interaction hypotheses are currently the leading explanations as to the mechanisms behind FLASH, but these are still not well understood, with many questions remaining about the exact underpinnings of FLASH and the treatment parameters required to optimally induce it.

View Article and Find Full Text PDF

Ultra-high dose rate radiotherapy with electrons and protons has shown potential for cancer treatment by effectively targeting tumors while sparing healthy tissues (FLASH effect). This study aimed to investigate the potential FLASH sparing effect of ultra-high-dose rate helium ion irradiation, focusing on acute brain injury and subcutaneous tumor response in a preclinical in vivo setting. Raster-scanned helium ion beams were used to compare the effects of standard dose rate (SDR at 0.

View Article and Find Full Text PDF

Recently, ultra-high dose rate (> 40 Gy/s, uHDR; FLASH) radiation therapy (RT) has attracted interest, because the FLASH effect that is, while a cell-killing effect on cancer cells remains, the damage to normal tissue could be spared has been reported. This study aimed to compare the immune-related protein expression on cancer cells after γ-ray, conventionally used dose rate (Conv) carbon ion (C-ion), and uHDR C-ion. B16F10 murine melanoma and Pan02 murine pancreas cancer were irradiated with γ-ray at Osaka University and with C-ion at Osaka HIMAK.

View Article and Find Full Text PDF

Over the last decade, the annual Immunorad Conference, held under the joint auspicies of Gustave Roussy (Villejuif, France) and the Weill Cornell Medical College (New-York, USA) has aimed at exploring the latest advancements in the fields of tumor immunology and radiotherapy-immunotherapy combinations for the treatment of cancer. Gathering medical oncologists, radiation oncologists, physicians and researchers with esteemed expertise in these fields, the Immunorad Conference bridges the gap between preclinical outcomes and clinical opportunities. Thus, it paves a promising way toward optimizing radiotherapy-immunotherapy combinations and, from a broader perspective, improving therapeutic strategies for patients with cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!