Modern deep learning schemes have shown human-level performance in the area of medical science. However, the implementation of deep learning algorithms on dedicated hardware remains a challenging task because modern algorithms and neuronal activation functions are generally not hardware-friendly and require a lot of resources. Recently, researchers have come up with some hardware-friendly activation functions that can yield high throughput and high accuracy at the same time. In this context, we propose a hardware-based neural network that can predict the presence of cancer in humans with 98.23% accuracy. This is done by making use of cost-efficient, highly accurate activation functions, Sqish and LogSQNL. Due to its inherently parallel components, the system can classify a given sample in just one clock cycle, , 15.75 nanoseconds. Though this system is dedicated to cancer diagnosis, it can predict the presence of many other diseases such as those of the heart. This is because the system is reconfigurable and can be programmed to classify any sample into one of two classes. The proposed hardware system requires about 983 slice registers, 2,655 slice look-up tables, and only 1.1 kilobits of on-chip memory. The system can predict about 63.5 million cancer samples in a second and can perform about 20 giga-operations per second. The proposed system is about 5-16 times cheaper and at least four times speedier than other dedicated hardware systems using neural networks for classification tasks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9454880 | PMC |
http://dx.doi.org/10.7717/peerj-cs.1034 | DOI Listing |
NPJ Digit Med
January 2025
Neurofibromatosis Type 1 Center and Laboratory for Neurofibromatosis Type 1 Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
Deep-learning models have shown promise in differentiating between benign and malignant lesions. Previous studies have primarily focused on specific anatomical regions, overlooking tumors occurring throughout the body with highly heterogeneous whole-body backgrounds. Using neurofibromatosis type 1 (NF1) as an example, this study developed highly accurate MRI-based deep-learning models for the early automated screening of malignant peripheral nerve sheath tumors (MPNSTs) against complex whole-body background.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electrical Electronical Engineering, Yaşar University, Bornova, İzmir, Turkey.
We aimed to build a robust classifier for the MGMT methylation status of glioblastoma in multiparametric MRI. We focused on multi-habitat deep image descriptors as our basic focus. A subset of the BRATS 2021 MGMT methylation dataset containing both MGMT class labels and segmentation masks was used.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China.
Exploring the potential of advanced artificial intelligence technology in predicting microsatellite instability (MSI) and Ki-67 expression of endometrial cancer (EC) is highly significant. This study aimed to develop a novel hybrid radiomics approach integrating multiparametric magnetic resonance imaging (MRI), deep learning, and multichannel image analysis for predicting MSI and Ki-67 status. A retrospective study included 156 EC patients who were subsequently categorized into MSI and Ki-67 groups.
View Article and Find Full Text PDFSci Rep
January 2025
School of Electronic and Information Engineering, Changsha Institute of Technology, Changsha, 410200, China.
In order to solve the limitations of flipped classroom in personalized teaching and interactive effect improvement, this paper designs a new model of flipped classroom in colleges and universities based on Virtual Reality (VR) by combining the algorithm of Contrastive Language-Image Pre-Training (CLIP). Through cross-modal data fusion, the model deeply combines students' operation behavior with teaching content, and improves teaching effect through intelligent feedback mechanism. The test data shows that the similarity between video and image modes reaches 0.
View Article and Find Full Text PDFNPJ Precis Oncol
January 2025
Eötvös Loránd University, Department of Physics of Complex Systems, Budapest, Hungary.
Patients with High-Grade Serous Ovarian Cancer (HGSOC) exhibit varied responses to treatment, with 20-30% showing de novo resistance to platinum-based chemotherapy. While hematoxylin-eosin (H&E)-stained pathological slides are used for routine diagnosis of cancer type, they may also contain diagnostically useful information about treatment response. Our study demonstrates that combining H&E-stained whole slide images (WSIs) with proteomic signatures using a multimodal deep learning framework significantly improves the prediction of platinum response in both discovery and validation cohorts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!