Among the main challenges associated with navigating a mobile robot in complex environments are partial observability and stochasticity. This work proposes a stochastic formulation of the pathfinding problem, assuming that obstacles of arbitrary shapes may appear and disappear at random moments of time. Moreover, we consider the case when the environment is only partially observable for an agent. We study and evaluate two orthogonal approaches to tackle the problem of reaching the goal under such conditions: planning and learning. Within planning, an agent constantly re-plans and updates the path based on the history of the observations using a search-based planner. Within learning, an agent asynchronously learns to optimize a policy function using recurrent neural networks (we propose an original efficient, scalable approach). We carry on an extensive empirical evaluation of both approaches that show that the learning-based approach scales better to the increasing number of the unpredictably appearing/disappearing obstacles. At the same time, the planning-based one is preferable when the environment is close-to-the-deterministic (, external disturbances are rare). Code available at https://github.com/Tviskaron/pathfinding-in-stochastic-envs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9455045 | PMC |
http://dx.doi.org/10.7717/peerj-cs.1056 | DOI Listing |
BMC Public Health
January 2025
Department of Women's and Children's Health, Karolinska Institutet, Tomtebodavägen 18A, Stockholm, Solna, 171 77, Sweden.
Background: Globally, the quality of maternal and newborn care remains inadequate, as seen through indicators like perineal injuries and low Apgar scores. While midwifery practices have the potential to improve care quality and health outcomes, there is a lack of evidence on how midwife-led initiatives, particularly those aimed at improving the use of dynamic birth positions, intrapartum support, and perineal protection, affect these outcomes.
Objective: To explore how the use of dynamic birth positions, intrapartum support, and perineal protection impact the incidence of perineal injuries and the 5-min Apgar score within the context of a midwife-led quality improvement intervention.
NPJ Precis Oncol
January 2025
Athinoula A. Martinos Center for Biomedical Imaging, 149 13th St, Charlestown, MA, 02129, USA.
Recent progress in deep learning (DL) is producing a new generation of tools across numerous clinical applications. Within the analysis of brain tumors in magnetic resonance imaging, DL finds applications in tumor segmentation, quantification, and classification. It facilitates objective and reproducible measurements crucial for diagnosis, treatment planning, and disease monitoring.
View Article and Find Full Text PDFSci Rep
January 2025
OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Leuven, Belgium.
Condylar resorption is a feared complication of orthognathic surgery. This study investigated condylar resorption in a cohort of 200 patients This allowed for a powerful update on incidence and risk factors. 9.
View Article and Find Full Text PDFSci Data
January 2025
Department of Anatomy and Anthropology, Faculty of Medical & Health Sciences, Tel- Aviv University, Tel-Aviv, 699780, Israel.
This data descriptor presents a comprehensive and replicable dataset and method for calculating the cervical range of motion (CROM) utilizing quaternion-based orientation analysis from Delsys inertial measurement unit (IMU) sensors. This study was conducted with 14 participants and analyzed 504 cervical movements in the Sagittal, Frontal and Horizontal planes. Validated against a Universal Goniometer and tested for reliability and reproducibility.
View Article and Find Full Text PDFAcad Radiol
January 2025
Guangxi Medical University, Nanning, Guangxi 530021, China (C.Z., D.H., B.W., S.W., Y.S., X.W.); Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, Guangxi 530021, China (C.Z., D.H., B.W., S.W., Y.S., X.W.); Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China (D.H., X.W.). Electronic address:
Rationale And Objectives: Accurate preoperative pathological staging of gastric cancer is crucial for optimal treatment selection and improved patient outcomes. Traditional imaging methods such as CT and endoscopy have limitations in staging accuracy.
Methods: This retrospective study included 691 gastric cancer patients treated from March 2017 to March 2024.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!