The generalized fractional NU method for the diatomic molecules in the Deng-Fan model.

Eur Phys J D At Mol Opt Phys

Department of Mathematics and Computer Science, Faculty of Science, Menoufia University, Shibin El Kom, Egypt.

Published: September 2022

Abstract: A solution of the fractional -dimensional radial Schrödinger equation (SE) with the Deng-Fan potential (DFP) is investigated by the generalized fractional Nikiforov-Uvarov (NU) method. The analytical formulas of energy eigenvalues and corresponding eigenfunctions for the DFP are generated. Furthermore, the current results are applied to several diatomic molecules (DMs) for the DFP as well as the shifted Deng-Fan potential (SDFP). For both the DFP and its shifted potential, the effect of the fractional parameter ( ) on the energy levels of various DMs is examined numerically and graphically. We found that the energy eigenvalues are gradually improved when the fractional parameter increases. The energy spectra of various DMs are also evaluated in three-dimensional space and higher dimensions. It is worthy to note that the energy spectrum raises as the number of dimensions increases. In addition, the dependence of the energy spectra of the DFP and its shifted potential on the reduced mass, screening parameter, equilibrium bond length and rotational and vibrational quantum numbers is illustrated. To validate our findings, the energy levels of the DFP and SDFP are estimated at the classical case ( ) for various DMs and found that they are entirely compatible with earlier studies.

Graphical Abstract: In this study, a new algorithm of the generalized fractional Nikiforov-Uvarov method is employed to obtain new solutions to the fractional N-dimensional radial Schrödinger equation with the Deng-Fan potential. In addition, the results are applied to several diatomic molecules. The impact of the fractional parameter on the energy levels of various diatomic molecules is investigated. We found that the energy of the diatomic molecule is more bounded at lower fractional parameter values than in the classical case.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9449962PMC
http://dx.doi.org/10.1140/epjd/s10053-022-00480-wDOI Listing

Publication Analysis

Top Keywords

diatomic molecules
16
fractional parameter
16
generalized fractional
12
deng-fan potential
12
energy levels
12
energy
9
fractional
8
radial schrödinger
8
schrödinger equation
8
equation deng-fan
8

Similar Publications

Absorption-Emission Codes for Atomic and Molecular Quantum Information Platforms.

Phys Rev Lett

December 2024

University of Maryland, NIST, Joint Center for Quantum Information and Computer Science, /, College Park, Maryland 20742, USA.

Diatomic molecular codes [V. V. Albert, J.

View Article and Find Full Text PDF

Energetic and Electronic Properties of AcX and LaX (X = O and F).

J Phys Chem A

January 2025

Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States.

The bonding and spectroscopic properties of LaX and AcX (X = O and F) diatomic molecules were studied by high-level ab initio CCSD(T) and SO-CASPT2 electronic structure calculations. Bond dissociation energies (BDEs) were calculated at the Feller-Peterson-Dixon (FPD) level. Potential energy curves and spectroscopic constants for the lowest-lying spin-orbit Ω states were obtained at the SO-CASPT2/aQ-DK level.

View Article and Find Full Text PDF

A new method for the precise semiempirical determination of the basic parameters (structural parameters and parameters of the intramolecular potential energy surface, PES) of a molecule on the basis of highly accurate experimental data from the microwave and submillimeter-wave regions is suggested. The options and advantages of this method in comparison with the other methods of molecular PES determination are discussed using a diatomic molecule as an appropriate illustration. The HCl molecule is exploited as a suitable example.

View Article and Find Full Text PDF

Prediction of Cyclic O Molecules Stabilized by Helium under Pressure.

Adv Sci (Weinh)

January 2025

Center for High-Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, School of Science, Yanshan University, Qinhuangdao, 066004, China.

Oxygen usually exists in the form of diatomic molecules at ambient conditions. At high pressure, it undergoes a series of phase transitions from diatomic O to O cluster and ultimately dissociates into a polymeric O spiral chain structure. Intriguingly, the commonly found cyclic hexameric molecules in other group VIA elements (e.

View Article and Find Full Text PDF

Dative bonds are typically polar, weaker, and longer than electron-sharing covalent bonds. The intriguing diatomic BeF anion uniquely exhibits triple Be-F dative bonding with a considerable bond dissociation energy (BDE) of 88 kcal/mol. Here, we report exceptionally strong dative-bonded systems, [CO]BeF and [CO]BeF, with BDE values exceeding 155 kcal/mol by integrating [CO] and [CO] groups into the BeF framework.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!