Objective: Activation of toll-like receptor 9 (TLR9) has been proposed to play an inhibitory role in RANKL-induced osteoclastogenesis. A20 deubiquitinase has been found to be related to bone loss. This study investigated the role of CpG oligodeoxynucleotides (CpG-ODNs) through regulation of A20 deubiquitinase in RANKL-induced osteoclast formation.
Methods: RAW 264.7 cells, a murine monocyte-macrophage cell line, were incubated with or without CpG-ODN in the presence of RANKL. Osteoclast-specific genes and their related signaling molecules were measured by real-time quantitative polymerase chain reaction and Western blot assay. Morphological assessment for osteoclast formation was performed using tartrate-resistant acid phosphatase (TRAP) staining and F-actin ring formation staining.
Results: RANKL-induced osteoclast-related genes and proteins, c-Fos, NFATc1, TRAP, cathepsin K, and carbonic anhydrase II were significantly inhibited in RAW 264.7 cells stimulated with CpG-ODN. CpG-ODN attenuated TNF receptor-associated factor 6 (TRAF6), p-IB, and p-NF-B expression in RAW 264 cells mediated by RANKL. CpG-ODN increased A20 gene and proteins in time-dependent manner. A20 expression under costimulation with CpG-ODN and RANKL was more decreased than under stimulation with RANKL alone. Cells transfected with A20 siRNA augmented expression of osteoclast-related genes and proteins. Number of TRAP-positive cells transfected with A20 siRNA was higher than those transfected with NC siRNA. A20 expression in cells transfected with IL-1 siRNA in the presence of both RANKL and CpG-ODN was more decreased than those with NC siRNA.
Conclusion: This study showed that CpG-ODN suppressed RANKL-induced osteoclast formation through regulation of the A20-TRAF6 axis in RAW 264.7 cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9453122 | PMC |
http://dx.doi.org/10.1155/2022/5255935 | DOI Listing |
Antioxidants (Basel)
December 2024
Departamento de Medicina y Zootecnia de Rumiantes, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
The most common bee species used for honey production is (), followed by stingless bees. This study included scientific articles using the PRISMA approach. A random effect model was implemented and the effect size (ES) was calculated and reported as the standardized mean difference (SMD) and raw mean difference (RMD).
View Article and Find Full Text PDFGels
December 2024
Multimaterials and Interfaces Laboratory (LMI), CNRS UMR 5615, University Claude Bernard Lyon 1, University of Lyon, 6 rue Victor Grignard, 69622 Villeurbanne, France.
Temporomandibular disorders (TMD) are a public health problem that affects around 12% of the global population. The treatment is based on analgesics, non-steroidal anti-inflammatory, corticosteroids, anticonvulsants, or arthrocentesis associated with hyaluronic acid-based viscosupplementation. However, the use of hyaluronic acid alone in viscosupplementation does not seem to be enough to regulate the intra-articular inflammatory process.
View Article and Find Full Text PDFACS Meas Sci Au
December 2024
Chemical and Optical Sensing Division, Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Str. 11, Berlin D-12489, Germany.
Flow cytometry-based immunoassays are valuable in biomedical research and clinical applications due to their high throughput and multianalyte capability, but their adoption in areas such as food safety and environmental monitoring is limited by long assay times and complex workflows. Rapid, simplified bead-based cytometric immunoassays are needed to make these methods viable for point-of-need applications, especially with the increasing accessibility of miniaturized cytometers. This work introduces superparamagnetic hybrid polystyrene-silica core-shell microparticles as promising alternatives to conventional polymer beads in competitive cytometric immunoassays.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2024
Department of Advanced Materials for Energy, Catalonia Institute for Energy Research (IREC), Barcelona 08930, Spain.
The implementation of nanocomposite materials as electrode layers represents a potential turning point for next-generation of solid oxide cells in order to reduce the use of critical raw materials. However, the substitution of bulk electrode materials by thin films is still under debate especially due to the uncertainty about their performance and stability under operando conditions, which restricts their use in real applications. In this work, we propose a multiphase nanocomposite characterized by a highly disordered microstructure and high cationic intermixing as a result from thin-film self-assembly of a perovskite-based mixed ionic-electronic conductor (lanthanum strontium cobaltite) and a fluorite-based pure ionic conductor (samarium-doped ceria) as an oxygen electrode for reversible solid oxide cells.
View Article and Find Full Text PDFMolecules
June 2024
Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!