Introduction: Cardiovascular disease leads to high morbidity and mortality in patients with kidney failure. Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a systemic disease with various cardiac abnormalities. Details on the cardiovascular profile of patients with ADPKD who are undergoing kidney transplantation (KT) and its progression are limited.
Methods: Echocardiographic data within 2 years before KT (1993-2020), and major adverse cardiovascular events (MACEs) after transplantation were retrieved. The primary outcome is to assess cardiovascular abnormalities on echocardiography at the time of transplantation in ADPKD as compared with patients without ADPKD matched by sex (male, 59.4%) and age at transplantation (57.2 ± 8.8 years).
Results: Compared with diabetic nephropathy (DN, 271) and nondiabetic, patients without ADPKD (NDNA) ( 271) at the time of KT, patients with ADPKD ( 271) had lower rates of left ventricular hypertrophy (LVH) (39.4% vs. 66.4% vs. 48.6%), mitral (2.7% vs. 6.3% vs. 7.45) and tricuspid regurgitations (1.8% vs. 6.6% vs. 7.2%). Patients with ADPKD had less diastolic (25.3%) and systolic (5.6%) dysfunction at time of transplantation. Patients with ADPKD had the most favorable post-transplantation survival (median 18.7 years vs. 12.0 for diabetic nephropathy [DN] and 13.8 years for nondiabetic non-ADPKD [NDNA]; < 0.01) and the most favorable MACE-free survival rate (hazard ratio = 0.51, < 0.001). Patients with ADPKD had worsening of their valvular function and an increase in the sinus of Valsalva diameter post-transplantation (38.2 vs. 39.9 mm, < 0.01).
Conclusion: ADPKD transplant recipients have the most favorable cardiac profile pretransplantation with better patient survival and MACE-free survival rates but worsening valvular function and increasing sinus of Valsalva diameter, as compared with patients with other kidney diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9459062 | PMC |
http://dx.doi.org/10.1016/j.ekir.2022.06.006 | DOI Listing |
Biochim Biophys Acta Mol Basis Dis
January 2025
Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China; Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA. Electronic address:
Autosomal dominant polycystic kidney disease (ADPKD) is the fourth leading cause of end-stage renal disease, contributing substantially to patient morbidity, mortality, and healthcare system strain. Emerging research highlights a pivotal role of epigenetics in ADPKD's pathophysiology, where mechanisms like DNA methylation, histone modifications, and non-coding RNA regulation significantly impact disease onset and progression. These epigenetic factors influence gene expression and regulate key processes involved in cyst formation and expansion, fibrosis, and inflammatory infiltration, thus accelerating ADPKD progression.
View Article and Find Full Text PDFClin Exp Nephrol
January 2025
Otsuka Pharmaceutical Development and Commercialization, Princeton, NJ, USA.
Background: Despite of long-lasting tolvaptan treatment, individual renal outcomes are unclear in autosomal dominant polycystic kidney disease (ADPKD). This post-hoc analysis of the TEMPO 3:4 trial aimed to evaluate the predictability of estimated height-adjusted total kidney volume growth rate (eHTKV-α) on renal outcomes.
Methods: In TEMPO 3:4, 1445 patients with ADPKD were randomised to tolvaptan or placebo for 3 years.
J Am Soc Nephrol
January 2025
Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
Background: Notch signaling, a conserved mechanism of cell-to-cell communication, plays a crucial role in regulating cellular processes such as proliferation and differentiation in a context-dependent manner. However, the specific contribution of Notch signaling to the progression of polycystic kidney disease (PKD) remains unclear.
Methods: We investigated the changes in Notch signaling activity (Notch1-4) in the kidneys of autosomal dominant PKD (ADPKD) patients and two ADPKD mouse models (early and late onset).
Stem Cell Res
December 2024
Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai 200032, China. Electronic address:
Autosomal dominant polycystic kidney disease (ADPKD), a single-gene-inherited kidney disease, is a common cause of end-stage kidney disease (ESKD). The PKD1 gene mutation is the most common cause of ADPKD, accounting for approximately 78% of cases. ADPKD is characterized by the scattered distribution of multiple cysts in the renal parenchyma, ultimately leading to ESKD.
View Article and Find Full Text PDFAm J Kidney Dis
December 2024
Service de Néphrologie, Hémodialyse et Transplantation Rénale, Centre de référence MARHEA, CHRU Brest, Brest, France; Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels, Belgium. Electronic address:
Rationale & Objective: Monoallelic predicted Loss-of-Function (pLoF) variants in IFT140 have recently been associated with an autosomal dominant polycystic kidney disease (ADPKD)-like phenotype. This study sought to enhance the characterization of this phenotype.
Study Design: Case series.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!