PI3K-activated MSC proteomes inhibit mammary tumors via Hsp90ab1 and Myh9.

Mol Ther Oncolytics

Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China.

Published: September 2022

Despite the advance in medications in the past decade, aggressive breast cancer such as triple-negative breast cancer is difficult to treat. Here, we examined a counter-intuitive approach to converting human bone marrow-derived mesenchymal stem cells (MSCs) into induced tumor-suppressing cells by administering YS49, a PI3K/Akt activator. Notably, PI3K-activated MSCs generated tumor-suppressive proteomes, while PI3K-inactivated MSCs tumor-promotive proteomes. In a mouse model, the daily administration of YS49-treated MSC-derived CM decreased the progression of primary mammary tumors as well as the colonization of tumor cells in the lung. In the assay, the size of freshly isolated human breast cancer tissues, including estrogen receptor positive and negative as well as human epidermal growth factor receptor 2 (HER2) positive and negative, was decreased by YS49-treated MSC-derived CM. Hsp90ab1 was enriched in CM as an atypical tumor-suppressing protein and immunoprecipitated a non-muscle myosin, Myh9. Extracellular Hsp90ab1 and Myh9 exerted the anti-tumor action and inhibited the maturation of bone-resorbing osteoclasts. Collectively, this study demonstrated that the activation of PI3K generated tumor-suppressive proteomes in MSCs and supported the possibility of using patient-derived MSCs for the treatment of breast cancer and bone metastasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9420348PMC
http://dx.doi.org/10.1016/j.omto.2022.08.003DOI Listing

Publication Analysis

Top Keywords

breast cancer
16
mammary tumors
8
hsp90ab1 myh9
8
generated tumor-suppressive
8
tumor-suppressive proteomes
8
ys49-treated msc-derived
8
positive negative
8
mscs
5
pi3k-activated msc
4
proteomes
4

Similar Publications

CXCR4 promotes tumor stemness maintenance and CDK4/6 inhibitors resistance in ER-positive breast cancer.

Breast Cancer Res

January 2025

Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.

Background: CDK4/6 inhibitors have significantly improved the survival of patients with HR-positive/HER2-negative breast cancer, becoming a first-line treatment option. However, the development of resistance to these inhibitors is inevitable. To address this challenge, novel strategies are required to overcome resistance, necessitating a deeper understanding of its mechanisms.

View Article and Find Full Text PDF

Background: Patients who actively engage in their medical decision-making processes can experience better health outcomes. This exploratory study aimed to identify predictors of preferred and actual roles in decision-making in healthy women with BRCA1/2 pathogenic variants (PVs).

Methods: Women with BRCA1/2 PVs without a history of breast and/or ovarian cancer were recruited in six centres across Germany.

View Article and Find Full Text PDF

Targeting MYC for the treatment of breast cancer: use of the novel MYC-GSPT1 degrader, GT19630.

Invest New Drugs

January 2025

UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.

Background: Since MYC is one of the most frequently altered driver genes involved in cancer formation, it is a potential target for new anti-cancer therapies. Historically, however, MYC has proved difficult to target due to the absence of a suitable crevice for binding potential low molecular weight drugs.

Objective: The aim of this study was to evaluate a novel molecular glue, dubbed GT19630, which degrades both MYC and GSPT1, for the treatment of breast cancer.

View Article and Find Full Text PDF

Purpose: Build machine learning (ML) models able to predict pathological complete response (pCR) after neoadjuvant chemotherapy (NAC) in breast cancer (BC) patients based on conventional and radiomic signatures extracted from baseline [F]FDG PET/CT.

Material And Methods: Primary tumor and the most significant lymph node metastasis were manually segmented in baseline [F]FDG PET/CT of 52 newly diagnosed BC patients. Clinical parameters, NAC and conventional semiquantitative PET parameters were collected.

View Article and Find Full Text PDF

Micropeptide hSPAR regulates glutamine levels and suppresses mammary tumor growth via a TRIM21-P27KIP1-mTOR axis.

EMBO J

January 2025

Department of Geriatrics, Gerontology Institute of Anhui Province, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.

mTOR plays a pivotal role in cancer growth control upon amino acid response. Recently, CDK inhibitor P27KIP1 has been reported as a noncanonical inhibitor of mTOR signaling in MEFs, via unclear mechanisms. Here, we find that P27KIP1 degradation via E3 ligase TRIM21 is inhibited by human micropeptide hSPAR through its C-terminus (hSPAR-C), causing P27KIP1's cytoplasmic accumulation in breast cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!