The improvement of permeation of drugs across parasites' membranes to promote their diffusion component represents a challenge to achieve better therapeutic effects, including the avoidance of drug resistance. In the context of medicinal chemistry, suitable structural modifications can be made, either on a drug or a nanocarrier, to trigger different mechanisms that promote the influx across membranes. This study aimed to demonstrate the potential of a set of dendritic derivatives of β-cyclodextrin (m2G, h2G, and m3G) as nanocarriers, based on their physicochemical and biological behavior in terms of (i) stability, monitored by H NMR at pH 7 for seven days, (ii) ability to complex, and subsequently release around 50-80% of the cargo molecule (albendazole) in a biphasic medium and (iii) the absence of cysticidal effect in cysticercus cultures. The albendazole/nanocarrier inclusion complexes (ICs) were proved in the model. According to the EC values related to the cysticidal activity of albendazole, either free or complexed, the potency of this drug in the ICs experienced a significant increase, which may be attributed to the enhancement of its solubility but also to a better permeation mediated by the amphiphilic dendritic moieties, which ultimately positively impacts the diffusion of this drug through the tegument of the cysticerci. Additional considerations akin to synthetic ease of the dendritic nanocarriers, and production cost, along with the obtained outcomes, allowed us to place m2G followed by m3G as the best options to be considered for further assays.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9382653 | PMC |
http://dx.doi.org/10.1039/d2ra03314c | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!