Neonicotinoid contamination in tropical estuarine waters of Indonesia.

Heliyon

Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-0882, Japan.

Published: August 2022

Previous studies conducted in other countries showed that neonicotinoid insecticides contaminated environmental waters and reduced aquatic invertebrate abundance. This study analysed neonicotinoid concentrations in estuarine waters of Indramayu Regency, Indonesia, and their potential toxicity to the aquatic environment. Data collection included water sampling and analysis, watershed and paddy field analyses, and literature review. The results showed that the detection frequency of neonicotinoids was 75%, with imidacloprid and thiamethoxam having the highest mean concentrations compared to other compounds. The sample collected in August 2021 from an estuary in the Patrol sub-district contained the highest total neonicotinoid concentration (140.26 ng/L). Five samples (31.25%) contained imidacloprid concentrations that exceeded the chronic benchmark regulated by the Netherlands, thus related regulation and policies are encouraged to be established in Indonesia to prevent potential harmful effect of neonicotinoids to the aquatic environment. There was no significant correlation between the neonicotinoid concentrations and the paddy field and watershed sizes as well as the land use proportion for paddy fields within the watershed. This study is the first to report neonicotinoid contamination in Indonesian estuarine waters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9449554PMC
http://dx.doi.org/10.1016/j.heliyon.2022.e10330DOI Listing

Publication Analysis

Top Keywords

estuarine waters
12
neonicotinoid contamination
8
neonicotinoid concentrations
8
aquatic environment
8
paddy field
8
neonicotinoid
6
contamination tropical
4
tropical estuarine
4
waters
4
waters indonesia
4

Similar Publications

Emerging and legacy organophosphate flame retardants in the tropical estuarine food web: Do they exhibit similar bioaccumulation patterns, trophic partitioning and dietary exposure?

Water Res X

May 2025

Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.

Emerging organophosphate flame retardants (E-OPFRs) are a new class of pollutants that have attracted increasing attention, but their bioaccumulation patterns and trophodynamic behaviors in aquatic food webs still need to be validated by comparison with legacy OPFRs (L-OPFRs). In this study, we simultaneously investigated the bioaccumulation, trophic transfer, and dietary exposure of 8 E-OPFRs and 10 L-OPFRs in a tropical estuarine food web from Hainan Island, China. Notably, the ΣL-OPFRs concentration (16.

View Article and Find Full Text PDF

Population growth in coastal areas increases nitrogen inputs to receiving waterways and degrades water quality. Wetland habitats, including floodplain forests and marshes, can be effective nitrogen sinks; however, little is known about the effects of chronic point source nutrient enrichment on sediment nitrogen removal in tidally influenced coastal systems. This study characterizes enrichment patterns in two tidal systems affected by wastewater treatment facility (WWTF) effluent and assesses the impact on habitat nitrogen removal via denitrification.

View Article and Find Full Text PDF

Dredging in estuarine systems significantly impacts phytoplankton communities, with suspended particulate matter (SPM) and dissolved aluminum (Al) serving as indicators of disturbance intensity. This study assessed the effects of dredging in the São Marcos Estuarine Complex (SMEC), Brazil, over three distinct events (2015, 2017, 2020), involving varying sediment volumes and climatic influences. Prolonged dredging operations and increased sediment volumes led to a pronounced 43.

View Article and Find Full Text PDF

Mechanisms controlling spatial variability of geogenic ammonium in coastal aquifers: Insights from Holocene sedimentary evolution.

Water Res

January 2025

Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, School of Environmental Studies, Wuhan 430078, China.

The contamination of groundwater with geogenic ammonium (NH) across various geological backgrounds has garnered significant attention, particularly in coastal aquifer systems. However, there remains a gap in our understanding of the mechanisms governing the spatial variability of NH in coastal groundwater at a macroscopic scale. In this study, we collected the sediment samples from two boreholes corresponding to high-NH-N and low-NH-N groundwater.

View Article and Find Full Text PDF

Harmful cyanobacterial blooms (HCB) have become a common issue in freshwater worldwide. Biological methods for controlling HCB are relatively cost effective and environmentally friendly. The strain of ascomycete GF6 was isolated from a water sample collected from the estuarine zone of the eastern part of the Gulf of Finland.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!