While an increasing number of studies are adopting molecular and chemical methods for dietary characterization, these studies often employ only one of these laboratory-based techniques; this approach may yield an incomplete, or even biased, understanding of diet due to each method's inherent limitations. To explore the utility of coupling molecular and chemical techniques for dietary characterizations, we applied DNA metabarcoding alongside stable isotope analysis to characterize the dietary niche of breeding Louisiana waterthrush (Parkesia motacilla), a migratory songbird hypothesized to preferentially provision its offspring with pollution-intolerant, aquatic arthropod prey. While DNA metabarcoding was unable to determine if waterthrush provision aquatic and terrestrial prey in different abundances, we found that specific aquatic taxa were more likely to be detected in successive seasons than their terrestrial counterparts, thus supporting the aquatic specialization hypothesis. Our isotopic analysis added greater context to this hypothesis by concluding that breeding waterthrush provisioned Ephemeroptera and Plecoptera, two pollution-intolerant, aquatic orders, in higher quantities than other prey groups, and expanded their functional trophic niche when such prey were not abundantly provisioned. Finally, we found that the dietary characterizations from each approach were often uncorrelated, indicating that the results gleaned from a diet study can be particularly sensitive to the applied methodologies. Our findings contribute to a growing body of work indicating the importance of high-quality, aquatic habitats for both consumers and their pollution-intolerant prey, while also demonstrating how the application of multiple, laboratory-based techniques can provide insights not offered by either technique alone.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/mec.16688 | DOI Listing |
Mar Environ Res
December 2024
School of Life Sciences, East China Normal University, Shanghai, China; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education and Shanghai Science and Technology Committee, Shanghai, China. Electronic address:
Seawall construction has complex ecological impacts. However, the ecological mechanisms within plankton communities under tidal restriction resulting from seawall construction remain unexplored. Using environmental DNA (eDNA) metabarcoding, this study examined the impact of seawall construction on the assembly process of planktonic eukaryote and bacteria communities from the unrestricted area and the tide-restricted area in the Chongming Dongtan Nature Reserve of Yangtze River Estuary.
View Article and Find Full Text PDFPLoS One
January 2025
Danau Girang Field Centre, c/o Sabah Wildlife Department, Kota Kinabalu, Malaysia.
Characterizing the feeding ecology of threatened species is essential to establish appropriate conservation strategies. We focused our study on the proboscis monkey (Nasalis larvatus), an endangered primate species which is endemic to the island of Borneo. Our survey was conducted in the Lower Kinabatangan Wildlife Sanctuary (LKWS), a riverine protected area that is surrounded by oil palm plantations.
View Article and Find Full Text PDFFront Cell Infect Microbiol
January 2025
Biomedical Research Center, Qatar University, Doha, Qatar.
PLoS One
December 2024
Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland.
Sci Rep
December 2024
Food System Integrity, AgResearch Limited, Hopkirk Research Institute, Massey University, Cnr University Avenue and Library Road, Private Bag 11008, Palmerston North, 4442, New Zealand.
Understanding the composition of complex Escherichia coli populations from the environment is necessary for identifying strategies to reduce the impacts of fecal contamination and protect public health. Metabarcoding targeting the hypervariable gene gnd was used to reveal the complex population diversity of E. coli and phenotypically indistinct Escherichia species in water, soil, sediment, aquatic biofilm, and fecal samples from native forest and pastoral sites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!